diff --git a/ppcls/arch/utils.py b/ppcls/arch/utils.py index ecd9754e4..785b7fbbe 100644 --- a/ppcls/arch/utils.py +++ b/ppcls/arch/utils.py @@ -33,8 +33,8 @@ def get_architectures(): def get_blacklist_model_in_static_mode(): - from ppcls.arch.backbone import (distilled_vision_transformer, - vision_transformer) + from ppcls.arch.backbone import distilled_vision_transformer + from ppcls.arch.backbone import vision_transformer blacklist = distilled_vision_transformer.__all__ + vision_transformer.__all__ return blacklist @@ -60,10 +60,10 @@ def get_param_attr_dict(ParamAttr_config: Union[None, bool, Dict[str, Dict]] """parse ParamAttr from an dict Args: - ParamAttr_config (Union[bool, Dict[str, Dict]]): ParamAttr_config + ParamAttr_config (Union[None, bool, Dict[str, Dict]]): ParamAttr configure Returns: - Union[bool, paddle.ParamAttr]: Generated ParamAttr + Union[None, bool, paddle.ParamAttr]: Generated ParamAttr """ if ParamAttr_config is None: return None diff --git a/ppcls/data/preprocess/ops/operators.py b/ppcls/data/preprocess/ops/operators.py index 0b137b526..157f44f1a 100644 --- a/ppcls/data/preprocess/ops/operators.py +++ b/ppcls/data/preprocess/ops/operators.py @@ -22,7 +22,6 @@ import six import math import random import cv2 -from typing import Sequence import numpy as np from PIL import Image, ImageOps, __version__ as PILLOW_VERSION from paddle.vision.transforms import ColorJitter as RawColorJitter diff --git a/ppcls/loss/centerloss.py b/ppcls/loss/centerloss.py index 22ec55592..23a86ee88 100644 --- a/ppcls/loss/centerloss.py +++ b/ppcls/loss/centerloss.py @@ -23,8 +23,9 @@ import paddle.nn as nn class CenterLoss(nn.Layer): - """Center loss class - + """Center loss + paper : [A Discriminative Feature Learning Approach for Deep Face Recognition](https://link.springer.com/content/pdf/10.1007%2F978-3-319-46478-7_31.pdf) + code reference: https://github.com/michuanhaohao/reid-strong-baseline/blob/master/layers/center_loss.py#L7 Args: num_classes (int): number of classes. feat_dim (int): number of feature dimensions. diff --git a/ppcls/optimizer/__init__.py b/ppcls/optimizer/__init__.py index f45cae663..bdee9f9b6 100644 --- a/ppcls/optimizer/__init__.py +++ b/ppcls/optimizer/__init__.py @@ -71,7 +71,7 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim_cfg = optim_item[optim_name] # get optim_cfg lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch) - logger.info("build lr ({}) for scope ({}) success..".format( + logger.debug("build lr ({}) for scope ({}) success..".format( lr, optim_scope)) # step2 build regularization if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None: @@ -83,8 +83,8 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): reg_name = reg_config.pop('name') + 'Decay' reg = getattr(paddle.regularizer, reg_name)(**reg_config) optim_cfg["weight_decay"] = reg - logger.info("build regularizer ({}) for scope ({}) success..". - format(reg, optim_scope)) + logger.debug("build regularizer ({}) for scope ({}) success..". + format(reg, optim_scope)) # step3 build optimizer if 'clip_norm' in optim_cfg: clip_norm = optim_cfg.pop('clip_norm') @@ -123,7 +123,7 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) - logger.info("build optimizer ({}) for scope ({}) success..".format( + logger.debug("build optimizer ({}) for scope ({}) success..".format( optim, optim_scope)) optim_list.append(optim) lr_list.append(lr) diff --git a/ppcls/optimizer/learning_rate.py b/ppcls/optimizer/learning_rate.py index 4d69bed72..1a4561133 100644 --- a/ppcls/optimizer/learning_rate.py +++ b/ppcls/optimizer/learning_rate.py @@ -262,24 +262,6 @@ class Piecewise(object): return learning_rate -class Constant(LRScheduler): - """ - Constant learning rate - Args: - lr (float): The initial learning rate. It is a python float number. - last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. - """ - - def __init__(self, learning_rate, last_epoch=-1, by_epoch=False, **kwargs): - self.learning_rate = learning_rate - self.last_epoch = last_epoch - self.by_epoch = by_epoch - super().__init__() - - def get_lr(self): - return self.learning_rate - - class MultiStepDecay(LRScheduler): """ Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones.