add dynamic train
parent
166c3a88fe
commit
798fe1aa61
100
tools/train.py
100
tools/train.py
|
@ -20,8 +20,6 @@ import argparse
|
|||
import os
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.incubate.fleet.base import role_maker
|
||||
from paddle.fluid.incubate.fleet.collective import fleet
|
||||
|
||||
from ppcls.data import Reader
|
||||
from ppcls.utils.config import get_config
|
||||
|
@ -49,73 +47,63 @@ def parse_args():
|
|||
|
||||
|
||||
def main(args):
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
|
||||
config = get_config(args.config, overrides=args.override, show=True)
|
||||
# assign the place
|
||||
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
|
||||
gpu_id = fluid.dygraph.parallel.Env().dev_id
|
||||
place = fluid.CUDAPlace(gpu_id)
|
||||
|
||||
# startup_prog is used to do some parameter init work,
|
||||
# and train prog is used to hold the network
|
||||
startup_prog = fluid.Program()
|
||||
train_prog = fluid.Program()
|
||||
with fluid.dygraph.guard(place):
|
||||
strategy = fluid.dygraph.parallel.prepare_context()
|
||||
net = program.create_model(config.ARCHITECTURE, config.classes_num)
|
||||
net = fluid.dygraph.parallel.DataParallel(net, strategy)
|
||||
|
||||
best_top1_acc = 0.0 # best top1 acc record
|
||||
optimizer = program.create_optimizer(
|
||||
config, parameter_list=net.parameters())
|
||||
|
||||
train_dataloader, train_fetchs = program.build(
|
||||
config, train_prog, startup_prog, is_train=True)
|
||||
# load model from checkpoint or pretrained model
|
||||
init_model(config, net, optimizer)
|
||||
|
||||
if config.validate:
|
||||
valid_prog = fluid.Program()
|
||||
valid_dataloader, valid_fetchs = program.build(
|
||||
config, valid_prog, startup_prog, is_train=False)
|
||||
# clone to prune some content which is irrelevant in valid_prog
|
||||
valid_prog = valid_prog.clone(for_test=True)
|
||||
train_dataloader = program.create_dataloader()
|
||||
train_reader = Reader(config, 'train')()
|
||||
train_dataloader.set_sample_list_generator(train_reader, place)
|
||||
|
||||
# create the "Executor" with the statement of which place
|
||||
exe = fluid.Executor(place=place)
|
||||
# only run startup_prog once to init
|
||||
exe.run(startup_prog)
|
||||
if config.validate:
|
||||
valid_dataloader = program.create_dataloader()
|
||||
valid_reader = Reader(config, 'valid')()
|
||||
valid_dataloader.set_sample_list_generator(valid_reader, place)
|
||||
|
||||
# load model from checkpoint or pretrained model
|
||||
init_model(config, train_prog, exe)
|
||||
best_top1_acc = 0.0 # best top1 acc record
|
||||
for epoch_id in range(config.epochs):
|
||||
net.train()
|
||||
# 1. train with train dataset
|
||||
program.run(train_dataloader, config, net, optimizer, epoch_id,
|
||||
'train')
|
||||
|
||||
train_reader = Reader(config, 'train')()
|
||||
train_dataloader.set_sample_list_generator(train_reader, place)
|
||||
if fluid.dygraph.parallel.Env().local_rank == 0:
|
||||
# 2. validate with validate dataset
|
||||
if config.validate and epoch_id % config.valid_interval == 0:
|
||||
net.eval()
|
||||
top1_acc = program.run(valid_dataloader, config, net, None,
|
||||
epoch_id, 'valid')
|
||||
if top1_acc > best_top1_acc:
|
||||
best_top1_acc = top1_acc
|
||||
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
|
||||
best_top1_acc, epoch_id)
|
||||
logger.info("{:s}".format(
|
||||
logger.coloring(message, "RED")))
|
||||
if epoch_id % config.save_interval == 0:
|
||||
|
||||
if config.validate:
|
||||
valid_reader = Reader(config, 'valid')()
|
||||
valid_dataloader.set_sample_list_generator(valid_reader, place)
|
||||
compiled_valid_prog = program.compile(config, valid_prog)
|
||||
model_path = os.path.join(
|
||||
config.model_save_dir,
|
||||
config.ARCHITECTURE["name"])
|
||||
save_model(net, optimizer, model_path,
|
||||
"best_model_in_epoch_" + str(epoch_id))
|
||||
|
||||
compiled_train_prog = fleet.main_program
|
||||
for epoch_id in range(config.epochs):
|
||||
# 1. train with train dataset
|
||||
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
|
||||
epoch_id, 'train')
|
||||
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
|
||||
# 2. validate with validate dataset
|
||||
if config.validate and epoch_id % config.valid_interval == 0:
|
||||
top1_acc = program.run(valid_dataloader, exe,
|
||||
compiled_valid_prog, valid_fetchs,
|
||||
epoch_id, 'valid')
|
||||
if top1_acc > best_top1_acc:
|
||||
best_top1_acc = top1_acc
|
||||
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(best_top1_acc, epoch_id)
|
||||
logger.info("{:s}".format(logger.coloring(message, "RED")))
|
||||
if epoch_id % config.save_interval==0:
|
||||
|
||||
model_path = os.path.join(config.model_save_dir,
|
||||
# 3. save the persistable model
|
||||
if epoch_id % config.save_interval == 0:
|
||||
model_path = os.path.join(config.model_save_dir,
|
||||
config.ARCHITECTURE["name"])
|
||||
save_model(train_prog, model_path, "best_model_in_epoch_"+str(epoch_id))
|
||||
|
||||
# 3. save the persistable model
|
||||
if epoch_id % config.save_interval == 0:
|
||||
model_path = os.path.join(config.model_save_dir,
|
||||
config.ARCHITECTURE["name"])
|
||||
save_model(train_prog, model_path, epoch_id)
|
||||
save_model(net, optimizer, model_path, epoch_id)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue