add dynamic train

pull/152/head
WuHaobo 2020-06-08 12:26:35 +08:00
parent 166c3a88fe
commit 798fe1aa61
1 changed files with 44 additions and 56 deletions

View File

@ -20,8 +20,6 @@ import argparse
import os import os
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.incubate.fleet.collective import fleet
from ppcls.data import Reader from ppcls.data import Reader
from ppcls.utils.config import get_config from ppcls.utils.config import get_config
@ -49,73 +47,63 @@ def parse_args():
def main(args): def main(args):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
config = get_config(args.config, overrides=args.override, show=True) config = get_config(args.config, overrides=args.override, show=True)
# assign the place # assign the place
gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0)) gpu_id = fluid.dygraph.parallel.Env().dev_id
place = fluid.CUDAPlace(gpu_id) place = fluid.CUDAPlace(gpu_id)
# startup_prog is used to do some parameter init work, with fluid.dygraph.guard(place):
# and train prog is used to hold the network strategy = fluid.dygraph.parallel.prepare_context()
startup_prog = fluid.Program() net = program.create_model(config.ARCHITECTURE, config.classes_num)
train_prog = fluid.Program() net = fluid.dygraph.parallel.DataParallel(net, strategy)
best_top1_acc = 0.0 # best top1 acc record optimizer = program.create_optimizer(
config, parameter_list=net.parameters())
train_dataloader, train_fetchs = program.build( # load model from checkpoint or pretrained model
config, train_prog, startup_prog, is_train=True) init_model(config, net, optimizer)
if config.validate: train_dataloader = program.create_dataloader()
valid_prog = fluid.Program() train_reader = Reader(config, 'train')()
valid_dataloader, valid_fetchs = program.build( train_dataloader.set_sample_list_generator(train_reader, place)
config, valid_prog, startup_prog, is_train=False)
# clone to prune some content which is irrelevant in valid_prog
valid_prog = valid_prog.clone(for_test=True)
# create the "Executor" with the statement of which place if config.validate:
exe = fluid.Executor(place=place) valid_dataloader = program.create_dataloader()
# only run startup_prog once to init valid_reader = Reader(config, 'valid')()
exe.run(startup_prog) valid_dataloader.set_sample_list_generator(valid_reader, place)
# load model from checkpoint or pretrained model best_top1_acc = 0.0 # best top1 acc record
init_model(config, train_prog, exe) for epoch_id in range(config.epochs):
net.train()
# 1. train with train dataset
program.run(train_dataloader, config, net, optimizer, epoch_id,
'train')
train_reader = Reader(config, 'train')() if fluid.dygraph.parallel.Env().local_rank == 0:
train_dataloader.set_sample_list_generator(train_reader, place) # 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
top1_acc = program.run(valid_dataloader, config, net, None,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info("{:s}".format(
logger.coloring(message, "RED")))
if epoch_id % config.save_interval == 0:
if config.validate: model_path = os.path.join(
valid_reader = Reader(config, 'valid')() config.model_save_dir,
valid_dataloader.set_sample_list_generator(valid_reader, place) config.ARCHITECTURE["name"])
compiled_valid_prog = program.compile(config, valid_prog) save_model(net, optimizer, model_path,
"best_model_in_epoch_" + str(epoch_id))
compiled_train_prog = fleet.main_program # 3. save the persistable model
for epoch_id in range(config.epochs): if epoch_id % config.save_interval == 0:
# 1. train with train dataset model_path = os.path.join(config.model_save_dir,
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
epoch_id, 'train')
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
top1_acc = program.run(valid_dataloader, exe,
compiled_valid_prog, valid_fetchs,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(best_top1_acc, epoch_id)
logger.info("{:s}".format(logger.coloring(message, "RED")))
if epoch_id % config.save_interval==0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"]) config.ARCHITECTURE["name"])
save_model(train_prog, model_path, "best_model_in_epoch_"+str(epoch_id)) save_model(net, optimizer, model_path, epoch_id)
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(train_prog, model_path, epoch_id)
if __name__ == '__main__': if __name__ == '__main__':