add test_tipc
parent
af25eaf799
commit
79bbc286aa
|
@ -0,0 +1,67 @@
|
|||
|
||||
# 飞桨训推一体认证
|
||||
|
||||
## 1. 简介
|
||||
|
||||
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
|
||||
|
||||
<div align="center">
|
||||
<img src="docs/guide.png" width="1000">
|
||||
</div>
|
||||
|
||||
## 2. 汇总信息
|
||||
|
||||
打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
|
||||
|
||||
**字段说明:**
|
||||
- 基础训练预测:包括模型训练、Paddle Inference Python预测。
|
||||
- 更多训练方式:包括多机多卡、混合精度。
|
||||
- 模型压缩:包括裁剪、离线/在线量化、蒸馏。
|
||||
- 其他预测部署:包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。
|
||||
|
||||
更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的[更多教程](#more)。
|
||||
|
||||
## 3. 一键测试工具使用
|
||||
### 目录介绍
|
||||
./test_tipc/
|
||||
├── common_func.sh
|
||||
├── config
|
||||
│ ├── MobileNetV3_large_x1_0
|
||||
│ │ ├── train_infer_python.txt
|
||||
│ │ ├── train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
|
||||
│ │ └── train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
|
||||
│ └── ResNet50_vd
|
||||
│ ├── train_infer_python.txt
|
||||
│ ├── train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
|
||||
│ └── train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
|
||||
├── docs
|
||||
│ ├── guide.png
|
||||
│ └── test.png
|
||||
├── prepare.sh
|
||||
├── README.md
|
||||
├── results
|
||||
└── test_train_inference_python.sh
|
||||
|
||||
### 测试流程
|
||||
使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
|
||||
<div align="center">
|
||||
<img src="docs/test.png" width="800">
|
||||
</div>
|
||||
|
||||
1. 运行prepare.sh准备测试所需数据和模型;
|
||||
2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功;
|
||||
3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
|
||||
|
||||
其中,有4个测试主程序,功能如下:
|
||||
- `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
|
||||
- `test_inference_cpp.sh`:测试基于C++的模型推理。
|
||||
- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。
|
||||
- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。
|
||||
|
||||
<a name="more"></a>
|
||||
#### 更多教程
|
||||
各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
|
||||
[test_train_inference_python 使用](docs/test_train_inference_python.md)
|
||||
[test_inference_cpp 使用](docs/test_inference_cpp.md)
|
||||
[test_serving 使用](docs/test_serving.md)
|
||||
[test_lite 使用](docs/test_lite.md)
|
|
@ -0,0 +1,65 @@
|
|||
#!/bin/bash
|
||||
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
|
||||
function func_set_params(){
|
||||
key=$1
|
||||
value=$2
|
||||
if [ ${key}x = "null"x ];then
|
||||
echo " "
|
||||
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
|
||||
echo " "
|
||||
else
|
||||
echo "${key}=${value}"
|
||||
fi
|
||||
}
|
||||
|
||||
function func_parser_params(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
key=${array[0]}
|
||||
tmp=${array[1]}
|
||||
IFS="|"
|
||||
res=""
|
||||
for _params in ${tmp[*]}; do
|
||||
IFS="="
|
||||
array=(${_params})
|
||||
mode=${array[0]}
|
||||
value=${array[1]}
|
||||
if [[ ${mode} = ${MODE} ]]; then
|
||||
IFS="|"
|
||||
#echo $(func_set_params "${mode}" "${value}")
|
||||
echo $value
|
||||
break
|
||||
fi
|
||||
IFS="|"
|
||||
done
|
||||
echo ${res}
|
||||
}
|
||||
|
||||
function status_check(){
|
||||
last_status=$1 # the exit code
|
||||
run_command=$2
|
||||
run_log=$3
|
||||
if [ $last_status -eq 0 ]; then
|
||||
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
else
|
||||
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
fi
|
||||
}
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:MobileNetV3_large_x1_0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:null
|
||||
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:MobileNetV3_large_x1_0
|
||||
python:python3.7
|
||||
gpu_list:10.21.226.181,10.21.226.133;0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:null|amp
|
||||
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:MobileNetV3_large_x1_0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:amp
|
||||
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:ResNet50_vd
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:null
|
||||
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:ResNet50_vd
|
||||
python:python3.7
|
||||
gpu_list:10.21.226.181,10.21.226.133;0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:null|amp
|
||||
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
|
@ -0,0 +1,52 @@
|
|||
===========================train_params===========================
|
||||
model_name:ResNet50_vd
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:amp
|
||||
-o Global.epochs:lite_train_infer=2|whole_train_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train|fpgm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
|
||||
fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
|
||||
distill_export:null
|
||||
kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
|
||||
export2:null
|
||||
inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
|
||||
infer_model:../inference/
|
||||
infer_export:null
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
Binary file not shown.
After Width: | Height: | Size: 138 KiB |
Binary file not shown.
After Width: | Height: | Size: 224 KiB |
|
@ -0,0 +1,153 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
|
||||
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
|
||||
# 'whole_infer', 'klquant_whole_infer',
|
||||
# 'cpp_infer', 'serving_infer', 'lite_infer']
|
||||
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
if [ ${#array[*]} = 2 ]; then
|
||||
echo ${array[1]}
|
||||
else
|
||||
IFS="|"
|
||||
tmp="${array[1]}:${array[2]}"
|
||||
echo ${tmp}
|
||||
fi
|
||||
}
|
||||
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
model_url_value=$(func_parser_value "${lines[35]}")
|
||||
model_url_key=$(func_parser_key "${lines[35]}")
|
||||
|
||||
if [ ${MODE} = "lite_train_lite_infer" ] || [ ${MODE} = "lite_train_whole_infer" ];then
|
||||
# pretrain lite train data
|
||||
cd dataset
|
||||
rm -rf ILSVRC2012
|
||||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
|
||||
tar xf whole_chain_little_train.tar
|
||||
ln -s whole_chain_little_train ILSVRC2012
|
||||
cd ILSVRC2012
|
||||
mv train.txt train_list.txt
|
||||
mv val.txt val_list.txt
|
||||
if [ ${MODE} = "lite_train_lite_infer" ];then
|
||||
cp -r train/* val/
|
||||
fi
|
||||
cd ../../
|
||||
elif [ ${MODE} = "whole_infer" ] || [ ${MODE} = "cpp_infer" ];then
|
||||
# download data
|
||||
cd dataset
|
||||
rm -rf ILSVRC2012
|
||||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
|
||||
tar xf whole_chain_infer.tar
|
||||
ln -s whole_chain_infer ILSVRC2012
|
||||
cd ILSVRC2012
|
||||
mv val.txt val_list.txt
|
||||
ln -s val_list.txt train_list.txt
|
||||
cd ../../
|
||||
# download inference or pretrained model
|
||||
eval "wget -nc $model_url_value"
|
||||
if [[ $model_url_key == *inference* ]]; then
|
||||
rm -rf inference
|
||||
tar xf "${model_name}_inference.tar"
|
||||
fi
|
||||
elif [ ${MODE} = "whole_train_whole_infer" ];then
|
||||
cd dataset
|
||||
rm -rf ILSVRC2012
|
||||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar
|
||||
tar xf whole_chain_CIFAR100.tar
|
||||
ln -s whole_chain_CIFAR100 ILSVRC2012
|
||||
cd ILSVRC2012
|
||||
mv train.txt train_list.txt
|
||||
mv val.txt val_list.txt
|
||||
cd ../../
|
||||
fi
|
||||
|
||||
if [ ${MODE} = "serving_infer" ];then
|
||||
# prepare serving env
|
||||
python_name=$(func_parser_value "${lines[2]}")
|
||||
${python_name} -m pip install install paddle-serving-server-gpu==0.6.1.post101
|
||||
${python_name} -m pip install paddle_serving_client==0.6.1
|
||||
${python_name} -m pip install paddle-serving-app==0.6.1
|
||||
unset http_proxy
|
||||
unset https_proxy
|
||||
cd ./deploy/paddleserving
|
||||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
|
||||
fi
|
||||
|
||||
if [ ${MODE} = "cpp_infer" ];then
|
||||
cd deploy/cpp
|
||||
echo "################### build opencv ###################"
|
||||
rm -rf 3.4.7.tar.gz opencv-3.4.7/
|
||||
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
|
||||
tar -xf 3.4.7.tar.gz
|
||||
install_path=$(pwd)/opencv-3.4.7/opencv3
|
||||
cd opencv-3.4.7/
|
||||
|
||||
rm -rf build
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DCMAKE_INSTALL_PREFIX=${install_path} \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DWITH_IPP=OFF \
|
||||
-DBUILD_IPP_IW=OFF \
|
||||
-DWITH_LAPACK=OFF \
|
||||
-DWITH_EIGEN=OFF \
|
||||
-DCMAKE_INSTALL_LIBDIR=lib64 \
|
||||
-DWITH_ZLIB=ON \
|
||||
-DBUILD_ZLIB=ON \
|
||||
-DWITH_JPEG=ON \
|
||||
-DBUILD_JPEG=ON \
|
||||
-DWITH_PNG=ON \
|
||||
-DBUILD_PNG=ON \
|
||||
-DWITH_TIFF=ON \
|
||||
-DBUILD_TIFF=ON
|
||||
make -j
|
||||
make install
|
||||
cd ../../
|
||||
echo "################### build opencv finished ###################"
|
||||
|
||||
echo "################### build PaddleClas demo ####################"
|
||||
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
|
||||
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
|
||||
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
|
||||
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
mkdir ${BUILD_DIR}
|
||||
cd ${BUILD_DIR}
|
||||
cmake .. \
|
||||
-DPADDLE_LIB=${LIB_DIR} \
|
||||
-DWITH_MKL=ON \
|
||||
-DDEMO_NAME=clas_system \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DWITH_TENSORRT=OFF \
|
||||
-DTENSORRT_DIR=${TENSORRT_DIR} \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
||||
make -j
|
||||
echo "################### build PaddleClas demo finished ###################"
|
||||
fi
|
|
@ -0,0 +1,326 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
source test_tipc/common_func.sh
|
||||
|
||||
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
|
||||
# The training params
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
python=$(func_parser_value "${lines[2]}")
|
||||
gpu_list=$(func_parser_value "${lines[3]}")
|
||||
train_use_gpu_key=$(func_parser_key "${lines[4]}")
|
||||
train_use_gpu_value=$(func_parser_value "${lines[4]}")
|
||||
autocast_list=$(func_parser_value "${lines[5]}")
|
||||
autocast_key=$(func_parser_key "${lines[5]}")
|
||||
epoch_key=$(func_parser_key "${lines[6]}")
|
||||
epoch_num=$(func_parser_params "${lines[6]}")
|
||||
save_model_key=$(func_parser_key "${lines[7]}")
|
||||
train_batch_key=$(func_parser_key "${lines[8]}")
|
||||
train_batch_value=$(func_parser_params "${lines[8]}")
|
||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
||||
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
||||
train_model_name=$(func_parser_value "${lines[10]}")
|
||||
train_infer_img_dir=$(func_parser_value "${lines[11]}")
|
||||
train_param_key1=$(func_parser_key "${lines[12]}")
|
||||
train_param_value1=$(func_parser_value "${lines[12]}")
|
||||
|
||||
trainer_list=$(func_parser_value "${lines[14]}")
|
||||
trainer_norm=$(func_parser_key "${lines[15]}")
|
||||
norm_trainer=$(func_parser_value "${lines[15]}")
|
||||
pact_key=$(func_parser_key "${lines[16]}")
|
||||
pact_trainer=$(func_parser_value "${lines[16]}")
|
||||
fpgm_key=$(func_parser_key "${lines[17]}")
|
||||
fpgm_trainer=$(func_parser_value "${lines[17]}")
|
||||
distill_key=$(func_parser_key "${lines[18]}")
|
||||
distill_trainer=$(func_parser_value "${lines[18]}")
|
||||
trainer_key1=$(func_parser_key "${lines[19]}")
|
||||
trainer_value1=$(func_parser_value "${lines[19]}")
|
||||
trainer_key2=$(func_parser_key "${lines[20]}")
|
||||
trainer_value2=$(func_parser_value "${lines[20]}")
|
||||
|
||||
eval_py=$(func_parser_value "${lines[23]}")
|
||||
eval_key1=$(func_parser_key "${lines[24]}")
|
||||
eval_value1=$(func_parser_value "${lines[24]}")
|
||||
|
||||
save_infer_key=$(func_parser_key "${lines[27]}")
|
||||
export_weight=$(func_parser_key "${lines[28]}")
|
||||
norm_export=$(func_parser_value "${lines[29]}")
|
||||
pact_export=$(func_parser_value "${lines[30]}")
|
||||
fpgm_export=$(func_parser_value "${lines[31]}")
|
||||
distill_export=$(func_parser_value "${lines[32]}")
|
||||
kl_quant_cmd_key=$(func_parser_key "${lines[33]}")
|
||||
kl_quant_cmd_value=$(func_parser_value "${lines[33]}")
|
||||
export_key2=$(func_parser_key "${lines[34]}")
|
||||
export_value2=$(func_parser_value "${lines[34]}")
|
||||
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[36]}")
|
||||
infer_export_flag=$(func_parser_value "${lines[37]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[38]}")
|
||||
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[39]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[40]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[40]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[41]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[41]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[42]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[42]}")
|
||||
batch_size_key=$(func_parser_key "${lines[43]}")
|
||||
batch_size_list=$(func_parser_value "${lines[43]}")
|
||||
use_trt_key=$(func_parser_key "${lines[44]}")
|
||||
use_trt_list=$(func_parser_value "${lines[44]}")
|
||||
precision_key=$(func_parser_key "${lines[45]}")
|
||||
precision_list=$(func_parser_value "${lines[45]}")
|
||||
infer_model_key=$(func_parser_key "${lines[46]}")
|
||||
image_dir_key=$(func_parser_key "${lines[47]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[47]}")
|
||||
save_log_key=$(func_parser_key "${lines[48]}")
|
||||
benchmark_key=$(func_parser_key "${lines[49]}")
|
||||
benchmark_value=$(func_parser_value "${lines[49]}")
|
||||
infer_key1=$(func_parser_key "${lines[50]}")
|
||||
infer_value1=$(func_parser_value "${lines[50]}")
|
||||
|
||||
LOG_PATH="./test_tipc/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results_python.log"
|
||||
|
||||
function func_inference(){
|
||||
IFS='|'
|
||||
_python=$1
|
||||
_script=$2
|
||||
_model_dir=$3
|
||||
_log_path=$4
|
||||
_img_dir=$5
|
||||
_flag_quant=$6
|
||||
# inference
|
||||
for use_gpu in ${use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${cpu_threads_list[*]}; do
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "../${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||
for use_trt in ${use_trt_list[*]}; do
|
||||
for precision in ${precision_list[*]}; do
|
||||
if [ ${precision} = "True" ] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${precision_key}" "${precision}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "../${status_log}"
|
||||
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_export_flag=(${infer_export_flag})
|
||||
infer_quant_flag=(${infer_is_quant})
|
||||
if [ ${infer_export_flag} != "null" ] && [ ${infer_export_flag} != "False" ]; then
|
||||
rm -rf ${infer_model_dir_list/..\//}
|
||||
export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
|
||||
eval $export_cmd
|
||||
fi
|
||||
cd deploy
|
||||
for infer_model in ${infer_model_dir_list[*]}; do
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
echo "is_quant: ${is_quant}"
|
||||
func_inference "${python}" "${inference_py}" "${infer_model}" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
cd ..
|
||||
|
||||
# for kl_quant
|
||||
if [ ${kl_quant_cmd_value} != "null" ] && [ ${kl_quant_cmd_value} != "False" ]; then
|
||||
echo "kl_quant"
|
||||
command="${python} ${kl_quant_cmd_value}"
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
cd inference/quant_post_static_model
|
||||
ln -s __model__ inference.pdmodel
|
||||
ln -s __params__ inference.pdiparams
|
||||
cd ../../deploy
|
||||
is_quant=True
|
||||
func_inference "${python}" "${inference_py}" "${infer_model}/quant_post_static_model" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
cd ..
|
||||
fi
|
||||
else
|
||||
IFS="|"
|
||||
export Count=0
|
||||
USE_GPU_KEY=(${train_use_gpu_value})
|
||||
for gpu in ${gpu_list[*]}; do
|
||||
train_use_gpu=${USE_GPU_KEY[Count]}
|
||||
Count=$(($Count + 1))
|
||||
ips=""
|
||||
if [ ${gpu} = "-1" ];then
|
||||
env=""
|
||||
elif [ ${#gpu} -le 1 ];then
|
||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||
eval ${env}
|
||||
elif [ ${#gpu} -le 15 ];then
|
||||
IFS=","
|
||||
array=(${gpu})
|
||||
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||
IFS="|"
|
||||
else
|
||||
IFS=";"
|
||||
array=(${gpu})
|
||||
ips=${array[0]}
|
||||
gpu=${array[1]}
|
||||
IFS="|"
|
||||
env=" "
|
||||
fi
|
||||
for autocast in ${autocast_list[*]}; do
|
||||
for trainer in ${trainer_list[*]}; do
|
||||
flag_quant=False
|
||||
if [ ${trainer} = ${pact_key} ]; then
|
||||
run_train=${pact_trainer}
|
||||
run_export=${pact_export}
|
||||
flag_quant=True
|
||||
elif [ ${trainer} = "${fpgm_key}" ]; then
|
||||
run_train=${fpgm_trainer}
|
||||
run_export=${fpgm_export}
|
||||
elif [ ${trainer} = "${distill_key}" ]; then
|
||||
run_train=${distill_trainer}
|
||||
run_export=${distill_export}
|
||||
elif [ ${trainer} = ${trainer_key1} ]; then
|
||||
run_train=${trainer_value1}
|
||||
run_export=${export_value1}
|
||||
elif [[ ${trainer} = ${trainer_key2} ]]; then
|
||||
run_train=${trainer_value2}
|
||||
run_export=${export_value2}
|
||||
else
|
||||
run_train=${norm_trainer}
|
||||
run_export=${norm_export}
|
||||
fi
|
||||
|
||||
if [ ${run_train} = "null" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
|
||||
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
|
||||
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
||||
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
||||
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
||||
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu_value}")
|
||||
if [ ${#ips} -le 26 ];then
|
||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||
nodes=1
|
||||
else
|
||||
IFS=","
|
||||
ips_array=(${ips})
|
||||
IFS="|"
|
||||
nodes=${#ips_array[@]}
|
||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
|
||||
fi
|
||||
|
||||
# load pretrain from norm training if current trainer is pact or fpgm trainer
|
||||
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
|
||||
set_pretrain="${load_norm_train_model}"
|
||||
fi
|
||||
|
||||
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
|
||||
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
||||
elif [ ${#ips} -le 26 ];then # train with multi-gpu
|
||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
else # train with multi-machine
|
||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
fi
|
||||
# run train
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
export FLAGS_cudnn_deterministic=True
|
||||
eval $cmd
|
||||
status_check $? "${cmd}" "${status_log}"
|
||||
|
||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${$model_name}/${train_model_name}")
|
||||
# save norm trained models to set pretrain for pact training and fpgm training
|
||||
if [ ${trainer} = ${trainer_norm} ]; then
|
||||
load_norm_train_model=${set_eval_pretrain}
|
||||
fi
|
||||
# run eval
|
||||
if [ ${eval_py} != "null" ]; then
|
||||
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
|
||||
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
|
||||
eval $eval_cmd
|
||||
status_check $? "${eval_cmd}" "${status_log}"
|
||||
fi
|
||||
# run export model
|
||||
if [ ${run_export} != "null" ]; then
|
||||
# run export model
|
||||
save_infer_path="${save_log}"
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
|
||||
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
|
||||
eval $export_cmd
|
||||
status_check $? "${export_cmd}" "${status_log}"
|
||||
|
||||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
cd deploy
|
||||
func_inference "${python}" "${inference_py}" "../${save_infer_path}" "../${LOG_PATH}" "${infer_img_dir}" "${flag_quant}"
|
||||
cd ..
|
||||
fi
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
done # done with: for trainer in ${trainer_list[*]}; do
|
||||
done # done with: for autocast in ${autocast_list[*]}; do
|
||||
done # done with: for gpu in ${gpu_list[*]}; do
|
||||
fi # end if [ ${MODE} = "infer" ]; then
|
Loading…
Reference in New Issue