diff --git a/test_tipc/README.md b/test_tipc/README.md
new file mode 100644
index 000000000..59391a43a
--- /dev/null
+++ b/test_tipc/README.md
@@ -0,0 +1,67 @@
+
+# 飞桨训推一体认证
+
+## 1. 简介
+
+飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的飞桨训推一体认证 (Training and Inference Pipeline Certification(TIPC)) 信息和测试工具,方便用户查阅每种模型的训练推理部署打通情况,并可以进行一键测试。
+
+
+

+
+
+## 2. 汇总信息
+
+打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
+
+**字段说明:**
+- 基础训练预测:包括模型训练、Paddle Inference Python预测。
+- 更多训练方式:包括多机多卡、混合精度。
+- 模型压缩:包括裁剪、离线/在线量化、蒸馏。
+- 其他预测部署:包括Paddle Inference C++预测、Paddle Serving部署、Paddle-Lite部署等。
+
+更详细的mkldnn、Tensorrt等预测加速相关功能的支持情况可以查看各测试工具的[更多教程](#more)。
+
+## 3. 一键测试工具使用
+### 目录介绍
+./test_tipc/
+├── common_func.sh
+├── config
+│ ├── MobileNetV3_large_x1_0
+│ │ ├── train_infer_python.txt
+│ │ ├── train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
+│ │ └── train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+│ └── ResNet50_vd
+│ ├── train_infer_python.txt
+│ ├── train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
+│ └── train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
+├── docs
+│ ├── guide.png
+│ └── test.png
+├── prepare.sh
+├── README.md
+├── results
+└── test_train_inference_python.sh
+
+### 测试流程
+使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
+
+

+
+
+1. 运行prepare.sh准备测试所需数据和模型;
+2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功;
+3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
+
+其中,有4个测试主程序,功能如下:
+- `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
+- `test_inference_cpp.sh`:测试基于C++的模型推理。
+- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。
+- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。
+
+
+#### 更多教程
+各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
+[test_train_inference_python 使用](docs/test_train_inference_python.md)
+[test_inference_cpp 使用](docs/test_inference_cpp.md)
+[test_serving 使用](docs/test_serving.md)
+[test_lite 使用](docs/test_lite.md)
diff --git a/test_tipc/common_func.sh b/test_tipc/common_func.sh
new file mode 100644
index 000000000..3f0fa66b7
--- /dev/null
+++ b/test_tipc/common_func.sh
@@ -0,0 +1,65 @@
+#!/bin/bash
+
+function func_parser_key(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[0]}
+ echo ${tmp}
+}
+
+function func_parser_value(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[1]}
+ echo ${tmp}
+}
+
+function func_set_params(){
+ key=$1
+ value=$2
+ if [ ${key}x = "null"x ];then
+ echo " "
+ elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
+ echo " "
+ else
+ echo "${key}=${value}"
+ fi
+}
+
+function func_parser_params(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ key=${array[0]}
+ tmp=${array[1]}
+ IFS="|"
+ res=""
+ for _params in ${tmp[*]}; do
+ IFS="="
+ array=(${_params})
+ mode=${array[0]}
+ value=${array[1]}
+ if [[ ${mode} = ${MODE} ]]; then
+ IFS="|"
+ #echo $(func_set_params "${mode}" "${value}")
+ echo $value
+ break
+ fi
+ IFS="|"
+ done
+ echo ${res}
+}
+
+function status_check(){
+ last_status=$1 # the exit code
+ run_command=$2
+ run_log=$3
+ if [ $last_status -eq 0 ]; then
+ echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ else
+ echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
+ fi
+}
+
diff --git a/test_tipc/config/MobileNetV3_large_x1_0/train_infer_python.txt b/test_tipc/config/MobileNetV3_large_x1_0/train_infer_python.txt
new file mode 100644
index 000000000..b784c84da
--- /dev/null
+++ b/test_tipc/config/MobileNetV3_large_x1_0/train_infer_python.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:MobileNetV3_large_x1_0
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_infer=2|whole_train_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
\ No newline at end of file
diff --git a/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt b/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 000000000..ade6e3e80
--- /dev/null
+++ b/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:MobileNetV3_large_x1_0
+python:python3.7
+gpu_list:10.21.226.181,10.21.226.133;0,1
+-o Global.device:gpu
+-o Global.auto_cast:null|amp
+-o Global.epochs:lite_train_infer=2|whole_train_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
\ No newline at end of file
diff --git a/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt b/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 000000000..732edc17d
--- /dev/null
+++ b/test_tipc/config/MobileNetV3_large_x1_0/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:MobileNetV3_large_x1_0
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:amp
+-o Global.epochs:lite_train_infer=2|whole_train_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/MobileNetV3_large_x1_0_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/MobileNetV3_large_x1_0_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
\ No newline at end of file
diff --git a/test_tipc/config/ResNet50_vd/train_infer_python.txt b/test_tipc/config/ResNet50_vd/train_infer_python.txt
new file mode 100644
index 000000000..69bfae9aa
--- /dev/null
+++ b/test_tipc/config/ResNet50_vd/train_infer_python.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:ResNet50_vd
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:null
+-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
diff --git a/test_tipc/config/ResNet50_vd/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt b/test_tipc/config/ResNet50_vd/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 000000000..5c65db74a
--- /dev/null
+++ b/test_tipc/config/ResNet50_vd/train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:ResNet50_vd
+python:python3.7
+gpu_list:10.21.226.181,10.21.226.133;0,1
+-o Global.device:gpu
+-o Global.auto_cast:null|amp
+-o Global.epochs:lite_train_infer=2|whole_train_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
diff --git a/test_tipc/config/ResNet50_vd/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt b/test_tipc/config/ResNet50_vd/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
new file mode 100644
index 000000000..1a3792174
--- /dev/null
+++ b/test_tipc/config/ResNet50_vd/train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt
@@ -0,0 +1,52 @@
+===========================train_params===========================
+model_name:ResNet50_vd
+python:python3.7
+gpu_list:0|0,1
+-o Global.device:gpu
+-o Global.auto_cast:amp
+-o Global.epochs:lite_train_infer=2|whole_train_infer=120
+-o Global.output_dir:./output/
+-o DataLoader.Train.sampler.batch_size:8
+-o Global.pretrained_model:null
+train_model_name:latest
+train_infer_img_dir:./dataset/ILSVRC2012/val
+null:null
+##
+trainer:norm_train|pact_train|fpgm_train
+norm_train:tools/train.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+pact_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+fpgm_train:tools/train.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
+distill_train:null
+null:null
+null:null
+##
+===========================eval_params===========================
+eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+null:null
+##
+===========================infer_params==========================
+-o Global.save_inference_dir:./inference
+-o Global.pretrained_model:
+norm_export:tools/export_model.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
+quant_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_quantization.yaml
+fpgm_export:tools/export_model.py -c ppcls/configs/slim/ResNet50_vd_prune.yaml
+distill_export:null
+kl_quant:deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml -o Global.save_inference_dir=./inference
+export2:null
+inference_model_url:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/whole_chain/ResNet50_vd_inference.tar
+infer_model:../inference/
+infer_export:null
+infer_quant:Fasle
+inference:python/predict_cls.py -c configs/inference_cls.yaml
+-o Global.use_gpu:True|False
+-o Global.enable_mkldnn:True|False
+-o Global.cpu_num_threads:1|6
+-o Global.batch_size:1|16
+-o Global.use_tensorrt:True|False
+-o Global.use_fp16:True|False
+-o Global.inference_model_dir:../inference
+-o Global.infer_imgs:../dataset/ILSVRC2012/val
+-o Global.save_log_path:null
+-o Global.benchmark:True
+null:null
+null:null
diff --git a/test_tipc/docs/guide.png b/test_tipc/docs/guide.png
new file mode 100644
index 000000000..319ac819d
Binary files /dev/null and b/test_tipc/docs/guide.png differ
diff --git a/test_tipc/docs/test.png b/test_tipc/docs/test.png
new file mode 100644
index 000000000..f99f23d70
Binary files /dev/null and b/test_tipc/docs/test.png differ
diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh
new file mode 100644
index 000000000..57c7b6b29
--- /dev/null
+++ b/test_tipc/prepare.sh
@@ -0,0 +1,153 @@
+#!/bin/bash
+FILENAME=$1
+
+# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
+# 'whole_infer', 'klquant_whole_infer',
+# 'cpp_infer', 'serving_infer', 'lite_infer']
+
+MODE=$2
+
+dataline=$(cat ${FILENAME})
+# parser params
+IFS=$'\n'
+lines=(${dataline})
+
+function func_parser_key(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ tmp=${array[0]}
+ echo ${tmp}
+}
+
+function func_parser_value(){
+ strs=$1
+ IFS=":"
+ array=(${strs})
+ if [ ${#array[*]} = 2 ]; then
+ echo ${array[1]}
+ else
+ IFS="|"
+ tmp="${array[1]}:${array[2]}"
+ echo ${tmp}
+ fi
+}
+
+model_name=$(func_parser_value "${lines[1]}")
+model_url_value=$(func_parser_value "${lines[35]}")
+model_url_key=$(func_parser_key "${lines[35]}")
+
+if [ ${MODE} = "lite_train_lite_infer" ] || [ ${MODE} = "lite_train_whole_infer" ];then
+ # pretrain lite train data
+ cd dataset
+ rm -rf ILSVRC2012
+ wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
+ tar xf whole_chain_little_train.tar
+ ln -s whole_chain_little_train ILSVRC2012
+ cd ILSVRC2012
+ mv train.txt train_list.txt
+ mv val.txt val_list.txt
+ if [ ${MODE} = "lite_train_lite_infer" ];then
+ cp -r train/* val/
+ fi
+ cd ../../
+elif [ ${MODE} = "whole_infer" ] || [ ${MODE} = "cpp_infer" ];then
+ # download data
+ cd dataset
+ rm -rf ILSVRC2012
+ wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
+ tar xf whole_chain_infer.tar
+ ln -s whole_chain_infer ILSVRC2012
+ cd ILSVRC2012
+ mv val.txt val_list.txt
+ ln -s val_list.txt train_list.txt
+ cd ../../
+ # download inference or pretrained model
+ eval "wget -nc $model_url_value"
+ if [[ $model_url_key == *inference* ]]; then
+ rm -rf inference
+ tar xf "${model_name}_inference.tar"
+ fi
+elif [ ${MODE} = "whole_train_whole_infer" ];then
+ cd dataset
+ rm -rf ILSVRC2012
+ wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar
+ tar xf whole_chain_CIFAR100.tar
+ ln -s whole_chain_CIFAR100 ILSVRC2012
+ cd ILSVRC2012
+ mv train.txt train_list.txt
+ mv val.txt val_list.txt
+ cd ../../
+fi
+
+if [ ${MODE} = "serving_infer" ];then
+ # prepare serving env
+ python_name=$(func_parser_value "${lines[2]}")
+ ${python_name} -m pip install install paddle-serving-server-gpu==0.6.1.post101
+ ${python_name} -m pip install paddle_serving_client==0.6.1
+ ${python_name} -m pip install paddle-serving-app==0.6.1
+ unset http_proxy
+ unset https_proxy
+ cd ./deploy/paddleserving
+ wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
+fi
+
+if [ ${MODE} = "cpp_infer" ];then
+ cd deploy/cpp
+ echo "################### build opencv ###################"
+ rm -rf 3.4.7.tar.gz opencv-3.4.7/
+ wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
+ tar -xf 3.4.7.tar.gz
+ install_path=$(pwd)/opencv-3.4.7/opencv3
+ cd opencv-3.4.7/
+
+ rm -rf build
+ mkdir build
+ cd build
+ cmake .. \
+ -DCMAKE_INSTALL_PREFIX=${install_path} \
+ -DCMAKE_BUILD_TYPE=Release \
+ -DBUILD_SHARED_LIBS=OFF \
+ -DWITH_IPP=OFF \
+ -DBUILD_IPP_IW=OFF \
+ -DWITH_LAPACK=OFF \
+ -DWITH_EIGEN=OFF \
+ -DCMAKE_INSTALL_LIBDIR=lib64 \
+ -DWITH_ZLIB=ON \
+ -DBUILD_ZLIB=ON \
+ -DWITH_JPEG=ON \
+ -DBUILD_JPEG=ON \
+ -DWITH_PNG=ON \
+ -DBUILD_PNG=ON \
+ -DWITH_TIFF=ON \
+ -DBUILD_TIFF=ON
+ make -j
+ make install
+ cd ../../
+ echo "################### build opencv finished ###################"
+
+ echo "################### build PaddleClas demo ####################"
+ OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
+ LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
+ CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
+ CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
+
+ BUILD_DIR=build
+ rm -rf ${BUILD_DIR}
+ mkdir ${BUILD_DIR}
+ cd ${BUILD_DIR}
+ cmake .. \
+ -DPADDLE_LIB=${LIB_DIR} \
+ -DWITH_MKL=ON \
+ -DDEMO_NAME=clas_system \
+ -DWITH_GPU=OFF \
+ -DWITH_STATIC_LIB=OFF \
+ -DWITH_TENSORRT=OFF \
+ -DTENSORRT_DIR=${TENSORRT_DIR} \
+ -DOPENCV_DIR=${OPENCV_DIR} \
+ -DCUDNN_LIB=${CUDNN_LIB_DIR} \
+ -DCUDA_LIB=${CUDA_LIB_DIR} \
+
+ make -j
+ echo "################### build PaddleClas demo finished ###################"
+fi
diff --git a/test_tipc/test_train_inference_python.sh b/test_tipc/test_train_inference_python.sh
new file mode 100644
index 000000000..52278b492
--- /dev/null
+++ b/test_tipc/test_train_inference_python.sh
@@ -0,0 +1,326 @@
+#!/bin/bash
+FILENAME=$1
+source test_tipc/common_func.sh
+
+# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
+MODE=$2
+
+dataline=$(cat ${FILENAME})
+
+# parser params
+IFS=$'\n'
+lines=(${dataline})
+
+# The training params
+model_name=$(func_parser_value "${lines[1]}")
+python=$(func_parser_value "${lines[2]}")
+gpu_list=$(func_parser_value "${lines[3]}")
+train_use_gpu_key=$(func_parser_key "${lines[4]}")
+train_use_gpu_value=$(func_parser_value "${lines[4]}")
+autocast_list=$(func_parser_value "${lines[5]}")
+autocast_key=$(func_parser_key "${lines[5]}")
+epoch_key=$(func_parser_key "${lines[6]}")
+epoch_num=$(func_parser_params "${lines[6]}")
+save_model_key=$(func_parser_key "${lines[7]}")
+train_batch_key=$(func_parser_key "${lines[8]}")
+train_batch_value=$(func_parser_params "${lines[8]}")
+pretrain_model_key=$(func_parser_key "${lines[9]}")
+pretrain_model_value=$(func_parser_value "${lines[9]}")
+train_model_name=$(func_parser_value "${lines[10]}")
+train_infer_img_dir=$(func_parser_value "${lines[11]}")
+train_param_key1=$(func_parser_key "${lines[12]}")
+train_param_value1=$(func_parser_value "${lines[12]}")
+
+trainer_list=$(func_parser_value "${lines[14]}")
+trainer_norm=$(func_parser_key "${lines[15]}")
+norm_trainer=$(func_parser_value "${lines[15]}")
+pact_key=$(func_parser_key "${lines[16]}")
+pact_trainer=$(func_parser_value "${lines[16]}")
+fpgm_key=$(func_parser_key "${lines[17]}")
+fpgm_trainer=$(func_parser_value "${lines[17]}")
+distill_key=$(func_parser_key "${lines[18]}")
+distill_trainer=$(func_parser_value "${lines[18]}")
+trainer_key1=$(func_parser_key "${lines[19]}")
+trainer_value1=$(func_parser_value "${lines[19]}")
+trainer_key2=$(func_parser_key "${lines[20]}")
+trainer_value2=$(func_parser_value "${lines[20]}")
+
+eval_py=$(func_parser_value "${lines[23]}")
+eval_key1=$(func_parser_key "${lines[24]}")
+eval_value1=$(func_parser_value "${lines[24]}")
+
+save_infer_key=$(func_parser_key "${lines[27]}")
+export_weight=$(func_parser_key "${lines[28]}")
+norm_export=$(func_parser_value "${lines[29]}")
+pact_export=$(func_parser_value "${lines[30]}")
+fpgm_export=$(func_parser_value "${lines[31]}")
+distill_export=$(func_parser_value "${lines[32]}")
+kl_quant_cmd_key=$(func_parser_key "${lines[33]}")
+kl_quant_cmd_value=$(func_parser_value "${lines[33]}")
+export_key2=$(func_parser_key "${lines[34]}")
+export_value2=$(func_parser_value "${lines[34]}")
+
+# parser inference model
+infer_model_dir_list=$(func_parser_value "${lines[36]}")
+infer_export_flag=$(func_parser_value "${lines[37]}")
+infer_is_quant=$(func_parser_value "${lines[38]}")
+
+# parser inference
+inference_py=$(func_parser_value "${lines[39]}")
+use_gpu_key=$(func_parser_key "${lines[40]}")
+use_gpu_list=$(func_parser_value "${lines[40]}")
+use_mkldnn_key=$(func_parser_key "${lines[41]}")
+use_mkldnn_list=$(func_parser_value "${lines[41]}")
+cpu_threads_key=$(func_parser_key "${lines[42]}")
+cpu_threads_list=$(func_parser_value "${lines[42]}")
+batch_size_key=$(func_parser_key "${lines[43]}")
+batch_size_list=$(func_parser_value "${lines[43]}")
+use_trt_key=$(func_parser_key "${lines[44]}")
+use_trt_list=$(func_parser_value "${lines[44]}")
+precision_key=$(func_parser_key "${lines[45]}")
+precision_list=$(func_parser_value "${lines[45]}")
+infer_model_key=$(func_parser_key "${lines[46]}")
+image_dir_key=$(func_parser_key "${lines[47]}")
+infer_img_dir=$(func_parser_value "${lines[47]}")
+save_log_key=$(func_parser_key "${lines[48]}")
+benchmark_key=$(func_parser_key "${lines[49]}")
+benchmark_value=$(func_parser_value "${lines[49]}")
+infer_key1=$(func_parser_key "${lines[50]}")
+infer_value1=$(func_parser_value "${lines[50]}")
+
+LOG_PATH="./test_tipc/output"
+mkdir -p ${LOG_PATH}
+status_log="${LOG_PATH}/results_python.log"
+
+function func_inference(){
+ IFS='|'
+ _python=$1
+ _script=$2
+ _model_dir=$3
+ _log_path=$4
+ _img_dir=$5
+ _flag_quant=$6
+ # inference
+ for use_gpu in ${use_gpu_list[*]}; do
+ if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
+ for use_mkldnn in ${use_mkldnn_list[*]}; do
+ if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
+ continue
+ fi
+ for threads in ${cpu_threads_list[*]}; do
+ for batch_size in ${batch_size_list[*]}; do
+ _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
+ set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
+ set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
+ set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
+ set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
+ set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
+ set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
+ command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
+ eval $command
+ last_status=${PIPESTATUS[0]}
+ eval "cat ${_save_log_path}"
+ status_check $last_status "${command}" "../${status_log}"
+ done
+ done
+ done
+ elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
+ for use_trt in ${use_trt_list[*]}; do
+ for precision in ${precision_list[*]}; do
+ if [ ${precision} = "True" ] && [ ${use_trt} = "False" ]; then
+ continue
+ fi
+ if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
+ continue
+ fi
+ for batch_size in ${batch_size_list[*]}; do
+ _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
+ set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
+ set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
+ set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
+ set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
+ set_precision=$(func_set_params "${precision_key}" "${precision}")
+ set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
+ command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
+ eval $command
+ last_status=${PIPESTATUS[0]}
+ eval "cat ${_save_log_path}"
+ status_check $last_status "${command}" "../${status_log}"
+
+ done
+ done
+ done
+ else
+ echo "Does not support hardware other than CPU and GPU Currently!"
+ fi
+ done
+}
+
+
+if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
+ GPUID=$3
+ if [ ${#GPUID} -le 0 ];then
+ env=" "
+ else
+ env="export CUDA_VISIBLE_DEVICES=${GPUID}"
+ fi
+ # set CUDA_VISIBLE_DEVICES
+ eval $env
+ export Count=0
+ IFS="|"
+ infer_export_flag=(${infer_export_flag})
+ infer_quant_flag=(${infer_is_quant})
+ if [ ${infer_export_flag} != "null" ] && [ ${infer_export_flag} != "False" ]; then
+ rm -rf ${infer_model_dir_list/..\//}
+ export_cmd="${python} ${norm_export} -o Global.pretrained_model=${model_name}_pretrained -o Global.save_inference_dir=${infer_model_dir_list/..\//}"
+ eval $export_cmd
+ fi
+ cd deploy
+ for infer_model in ${infer_model_dir_list[*]}; do
+ #run inference
+ is_quant=${infer_quant_flag[Count]}
+ echo "is_quant: ${is_quant}"
+ func_inference "${python}" "${inference_py}" "${infer_model}" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
+ Count=$(($Count + 1))
+ done
+ cd ..
+
+ # for kl_quant
+ if [ ${kl_quant_cmd_value} != "null" ] && [ ${kl_quant_cmd_value} != "False" ]; then
+ echo "kl_quant"
+ command="${python} ${kl_quant_cmd_value}"
+ eval $command
+ last_status=${PIPESTATUS[0]}
+ status_check $last_status "${command}" "${status_log}"
+ cd inference/quant_post_static_model
+ ln -s __model__ inference.pdmodel
+ ln -s __params__ inference.pdiparams
+ cd ../../deploy
+ is_quant=True
+ func_inference "${python}" "${inference_py}" "${infer_model}/quant_post_static_model" "../${LOG_PATH}" "${infer_img_dir}" ${is_quant}
+ cd ..
+ fi
+else
+ IFS="|"
+ export Count=0
+ USE_GPU_KEY=(${train_use_gpu_value})
+ for gpu in ${gpu_list[*]}; do
+ train_use_gpu=${USE_GPU_KEY[Count]}
+ Count=$(($Count + 1))
+ ips=""
+ if [ ${gpu} = "-1" ];then
+ env=""
+ elif [ ${#gpu} -le 1 ];then
+ env="export CUDA_VISIBLE_DEVICES=${gpu}"
+ eval ${env}
+ elif [ ${#gpu} -le 15 ];then
+ IFS=","
+ array=(${gpu})
+ env="export CUDA_VISIBLE_DEVICES=${array[0]}"
+ IFS="|"
+ else
+ IFS=";"
+ array=(${gpu})
+ ips=${array[0]}
+ gpu=${array[1]}
+ IFS="|"
+ env=" "
+ fi
+ for autocast in ${autocast_list[*]}; do
+ for trainer in ${trainer_list[*]}; do
+ flag_quant=False
+ if [ ${trainer} = ${pact_key} ]; then
+ run_train=${pact_trainer}
+ run_export=${pact_export}
+ flag_quant=True
+ elif [ ${trainer} = "${fpgm_key}" ]; then
+ run_train=${fpgm_trainer}
+ run_export=${fpgm_export}
+ elif [ ${trainer} = "${distill_key}" ]; then
+ run_train=${distill_trainer}
+ run_export=${distill_export}
+ elif [ ${trainer} = ${trainer_key1} ]; then
+ run_train=${trainer_value1}
+ run_export=${export_value1}
+ elif [[ ${trainer} = ${trainer_key2} ]]; then
+ run_train=${trainer_value2}
+ run_export=${export_value2}
+ else
+ run_train=${norm_trainer}
+ run_export=${norm_export}
+ fi
+
+ if [ ${run_train} = "null" ]; then
+ continue
+ fi
+
+ set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
+ set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
+ set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
+ set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
+ set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
+ set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${train_use_gpu_value}")
+ if [ ${#ips} -le 26 ];then
+ save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
+ nodes=1
+ else
+ IFS=","
+ ips_array=(${ips})
+ IFS="|"
+ nodes=${#ips_array[@]}
+ save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
+ fi
+
+ # load pretrain from norm training if current trainer is pact or fpgm trainer
+ if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
+ set_pretrain="${load_norm_train_model}"
+ fi
+
+ set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
+ if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
+ cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
+ elif [ ${#ips} -le 26 ];then # train with multi-gpu
+ cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
+ else # train with multi-machine
+ cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
+ fi
+ # run train
+ eval "unset CUDA_VISIBLE_DEVICES"
+ export FLAGS_cudnn_deterministic=True
+ eval $cmd
+ status_check $? "${cmd}" "${status_log}"
+
+ set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${$model_name}/${train_model_name}")
+ # save norm trained models to set pretrain for pact training and fpgm training
+ if [ ${trainer} = ${trainer_norm} ]; then
+ load_norm_train_model=${set_eval_pretrain}
+ fi
+ # run eval
+ if [ ${eval_py} != "null" ]; then
+ set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
+ eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
+ eval $eval_cmd
+ status_check $? "${eval_cmd}" "${status_log}"
+ fi
+ # run export model
+ if [ ${run_export} != "null" ]; then
+ # run export model
+ save_infer_path="${save_log}"
+ set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${model_name}/${train_model_name}")
+ set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
+ export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
+ eval $export_cmd
+ status_check $? "${export_cmd}" "${status_log}"
+
+ #run inference
+ eval $env
+ save_infer_path="${save_log}"
+ cd deploy
+ func_inference "${python}" "${inference_py}" "../${save_infer_path}" "../${LOG_PATH}" "${infer_img_dir}" "${flag_quant}"
+ cd ..
+ fi
+ eval "unset CUDA_VISIBLE_DEVICES"
+ done # done with: for trainer in ${trainer_list[*]}; do
+ done # done with: for autocast in ${autocast_list[*]}; do
+ done # done with: for gpu in ${gpu_list[*]}; do
+fi # end if [ ${MODE} = "infer" ]; then