add whole_chain test
parent
4af9f51088
commit
7d42f2dfe6
|
@ -41,6 +41,26 @@ class ClsPredictor(Predictor):
|
|||
if "PostProcess" in config:
|
||||
self.postprocess = build_postprocess(config["PostProcess"])
|
||||
|
||||
# for whole_chain project to test each repo of paddle
|
||||
self.benchmark = config.get(["benchmark"], False)
|
||||
if self.benchmark:
|
||||
import auto_log
|
||||
import os
|
||||
pid = os.getpid()
|
||||
self.auto_log = auto_log.AutoLogger(
|
||||
model_name='cls',
|
||||
model_precision='fp16'
|
||||
if config["Global"]["use_fp16"] else 'fp32',
|
||||
batch_size=1,
|
||||
data_shape=[3, 224, 224],
|
||||
save_path="../output/auto_log.lpg",
|
||||
inference_config=None,
|
||||
pids=pid,
|
||||
process_name=None,
|
||||
gpu_ids=None,
|
||||
time_keys=['preprocess_time', 'inference_time'],
|
||||
warmup=10)
|
||||
|
||||
def predict(self, images):
|
||||
input_names = self.paddle_predictor.get_input_names()
|
||||
input_tensor = self.paddle_predictor.get_input_handle(input_names[0])
|
||||
|
@ -49,16 +69,22 @@ class ClsPredictor(Predictor):
|
|||
output_tensor = self.paddle_predictor.get_output_handle(output_names[
|
||||
0])
|
||||
|
||||
if self.benchmark:
|
||||
self.auto_log.times.start()
|
||||
if not isinstance(images, (list, )):
|
||||
images = [images]
|
||||
for idx in range(len(images)):
|
||||
for ops in self.preprocess_ops:
|
||||
images[idx] = ops(images[idx])
|
||||
image = np.array(images)
|
||||
if self.benchmark:
|
||||
self.auto_log.times.stamp()
|
||||
|
||||
input_tensor.copy_from_cpu(image)
|
||||
self.paddle_predictor.run()
|
||||
batch_output = output_tensor.copy_to_cpu()
|
||||
if self.benchmark:
|
||||
self.auto_log.times.stamp()
|
||||
return batch_output
|
||||
|
||||
|
||||
|
@ -71,6 +97,9 @@ def main(config):
|
|||
img = cv2.imread(image_file)[:, :, ::-1]
|
||||
output = cls_predictor.predict(img)
|
||||
output = cls_predictor.postprocess(output, [image_file])
|
||||
if cls_predictor.benchmark:
|
||||
cls_predictor.auto_log.times.end(stamp=True)
|
||||
cls_predictor.auto_log.report()
|
||||
print(output)
|
||||
return
|
||||
|
||||
|
|
|
@ -0,0 +1,132 @@
|
|||
# global configs
|
||||
Global:
|
||||
checkpoints: null
|
||||
pretrained_model: null
|
||||
output_dir: ./output/
|
||||
device: gpu
|
||||
save_interval: 1
|
||||
eval_during_train: True
|
||||
eval_interval: 1
|
||||
epochs: 10
|
||||
print_batch_step: 10
|
||||
use_visualdl: False
|
||||
# used for static mode and model export
|
||||
image_shape: [3, 224, 224]
|
||||
save_inference_dir: ./inference
|
||||
# training model under @to_static
|
||||
to_static: False
|
||||
|
||||
# model architecture
|
||||
Arch:
|
||||
name: ResNet50
|
||||
class_num: 1000
|
||||
|
||||
# loss function config for traing/eval process
|
||||
Loss:
|
||||
Train:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
Eval:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Momentum
|
||||
momentum: 0.9
|
||||
lr:
|
||||
name: Piecewise
|
||||
learning_rate: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
values: [0.1, 0.01, 0.001, 0.0001]
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
coeff: 0.0001
|
||||
|
||||
|
||||
# data loader for train and eval
|
||||
DataLoader:
|
||||
Train:
|
||||
dataset:
|
||||
name: ImageNetDataset
|
||||
image_root: ./dataset/chain_dataset/
|
||||
cls_label_path: ./dataset/chain_dataset/train.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
|
||||
sampler:
|
||||
name: DistributedBatchSampler
|
||||
batch_size: 64
|
||||
drop_last: False
|
||||
shuffle: True
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: ImageNetDataset
|
||||
image_root: ./dataset/chain_dataset/
|
||||
cls_label_path: ./dataset/chain_dataset/val.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
sampler:
|
||||
name: DistributedBatchSampler
|
||||
batch_size: 64
|
||||
drop_last: False
|
||||
shuffle: False
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Infer:
|
||||
infer_imgs: docs/images/whl/demo.jpg
|
||||
batch_size: 10
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
PostProcess:
|
||||
name: Topk
|
||||
topk: 5
|
||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
||||
|
||||
Metric:
|
||||
Train:
|
||||
- TopkAcc:
|
||||
topk: [1, 5]
|
||||
Eval:
|
||||
- TopkAcc:
|
||||
topk: [1, 5]
|
|
@ -0,0 +1,57 @@
|
|||
===========================train_params===========================
|
||||
model_name:ResNet50_vd|ResNeXt101_vd_64x4d|HRNet_W18_C|MobileNetV3_large_x1_0|DarkNet53|MobileNetV1|MobileNetV2|ShuffleNetV2_x1_0
|
||||
model_name_pact:ResNet50_vd|MobileNetV3_large_x1_0
|
||||
model_name_fpgm:ResNet50_vd|MobileNetV3_large_x1_0
|
||||
model_name_kl:ResNet50_vd|MobileNetV3_large_x1_0
|
||||
python:python3.7
|
||||
gpu_list:0|0,1|-1
|
||||
Global.epoch_num:10
|
||||
Global.save_model_dir:./output/
|
||||
Global.pretrained_model:null
|
||||
Global.save_inference_dir:null
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
===========================scripts===========================
|
||||
train:tools/train.py -c test_ci/benchmark.yaml
|
||||
eval:tools/eval.py -c test_ci/benchmark.yaml
|
||||
norm_export:tools/export_model.py -c test_ci/benchmark.yaml
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
===========================infer_params===========================
|
||||
Global.save_log_path:./test/output/
|
||||
Global.use_gpu:True|False
|
||||
Global.enable_mkldnn:True|False
|
||||
Global.cpu_num_threads:1|6
|
||||
Global.batch_size:1
|
||||
Global.use_tensorrt:True|False
|
||||
Global.use_fp16:True|False
|
||||
Global.inference_model_dir:./inference
|
||||
Global.infer_imgs:./dataset/chain_dataset/val
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
===========================pretrained_model===========================
|
||||
ResNet50_vd:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams
|
||||
ResNeXt101_vd_64x4d:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams
|
||||
HRNet_W18_C:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams
|
||||
MobileNetV3_large_x1_0:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams
|
||||
DarkNet53:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams
|
||||
MobileNetV1:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
|
||||
MobileNetV2:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams
|
||||
ShuffleNetV2_x1_0:https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams
|
|
@ -0,0 +1,59 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
ifs=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
ResNet50_vd=$(func_parser_value "${lines[49]}")
|
||||
ResNeXt101_vd_64x4d=$(func_parser_value "${lines[50]}")
|
||||
HRNet_W18_C=$(func_parser_value "${lines[51]}")
|
||||
MobileNetV3_large_x1_0=$(func_parser_value "${lines[52]}")
|
||||
DarkNet53=$(func_parser_value "${lines[53]}")
|
||||
MobileNetV1=$(func_parser_value "${lines[54]}")
|
||||
MobileNetV2=$(func_parser_value "${lines[55]}")
|
||||
ShuffleNetV2_x1_0=$(func_parser_value "${lines[56]}")
|
||||
|
||||
model_name_list=$(func_parser_value "${lines[1]}")
|
||||
|
||||
if [ ${MODE} = "lite_train_infer" ] || [ ${MODE} = "whole_infer" ];then
|
||||
# pretrain lite train data
|
||||
cd dataset
|
||||
wget -nc http://10.21.226.181:8011/dataset/quanliantiao/little_train.tar
|
||||
tar xf little_train.tar
|
||||
ln -s little_train chain_dataset
|
||||
cd ../
|
||||
elif [ ${MODE} = "infer" ];then
|
||||
# download data
|
||||
cd dataset
|
||||
wget -nc http://10.21.226.181:8011/dataset/quanliantiao/infer.tar
|
||||
tar xf little.tar
|
||||
ln -s infer chain_dataset
|
||||
cd ../
|
||||
# download pretrained model
|
||||
mkdir -p pretrained_models
|
||||
cd pretrained_models
|
||||
eval "wget -nc $ResNet50_vd"
|
||||
eval "wget -nc $ResNeXt101_vd_64x4d"
|
||||
eval "wget -nc $HRNet_W18_C"
|
||||
eval "wget -nc $MobileNetV3_large_x1_0"
|
||||
eval "wget -nc $DarkNet53"
|
||||
eval "wget -nc $MobileNetV1"
|
||||
eval "wget -nc $MobileNetV2"
|
||||
eval "wget -nc $ShuffleNetV2_x1_0"
|
||||
|
||||
elif [ ${MODE} = "whole_train_infer" ];then
|
||||
cd dataset
|
||||
wget -nc http://10.21.226.181:8011/dataset/quanliantiao/CIFAR100.tar
|
||||
tar xf CIFAR100.tar
|
||||
ln -s CIFAR100 chain_dataset
|
||||
fi
|
|
@ -0,0 +1,209 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function status_check(){
|
||||
last_status=$1 # the exit code
|
||||
run_command=$2
|
||||
run_log=$3
|
||||
if [ $last_status -eq 0 ]; then
|
||||
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
else
|
||||
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
fi
|
||||
}
|
||||
|
||||
IFS=$'\n'
|
||||
# The training params
|
||||
model_name_list=$(func_parser_value "${lines[1]}")
|
||||
model_name_pact_list=$(func_parser_value "${lines[2]}")
|
||||
model_name_fpgm_list=$(func_parser_value "${lines[3]}")
|
||||
model_name_kl_list=$(func_parser_value "${lines[4]}")
|
||||
python=$(func_parser_value "${lines[5]}")
|
||||
gpu_list=$(func_parser_value "${lines[6]}")
|
||||
epoch_key=$(func_parser_key "${lines[7]}")
|
||||
epoch_value=$(func_parser_value "${lines[7]}")
|
||||
save_model_key=$(func_parser_key "${lines[8]}")
|
||||
save_model_value=$(func_parser_value "${lines[8]}")
|
||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
||||
save_infer_key=$(func_parser_key "${lines[10]}")
|
||||
|
||||
#scripts
|
||||
train_py=$(func_parser_value "${lines[20]}")
|
||||
eval_py=$(func_parser_value "${lines[21]}")
|
||||
norm_export=$(func_parser_value "${lines[22]}")
|
||||
inference_py=$(func_parser_value "${lines[23]}")
|
||||
|
||||
#The inference params
|
||||
use_gpu_key=$(func_parser_key "${lines[33]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[33]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[34]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[34]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[35]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[35]}")
|
||||
batch_size_key=$(func_parser_key "${lines[36]}")
|
||||
batch_size_list=$(func_parser_value "${lines[36]}")
|
||||
use_trt_key=$(func_parser_key "${lines[37]}")
|
||||
use_trt_list=$(func_parser_value "${lines[37]}")
|
||||
precision_key=$(func_parser_key "${lines[38]}")
|
||||
precision_list=$(func_parser_value "${lines[38]}")
|
||||
infer_model_key=$(func_parser_key "${lines[39]}")
|
||||
infer_model=$(func_parser_value "${lines[39]}")
|
||||
image_dir_key=$(func_parser_key "${lines[40]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[40]}")
|
||||
save_log_key=$(func_parser_key "${lines[32]}")
|
||||
|
||||
LOG_PATH="./test/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results.log"
|
||||
|
||||
|
||||
function func_inference(){
|
||||
IFS='|'
|
||||
_python=$1
|
||||
_script=$2
|
||||
_model_dir=$3
|
||||
_log_path=$4
|
||||
_img_dir=$5
|
||||
_model_name=$6
|
||||
|
||||
# inference
|
||||
for use_gpu in ${use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ]; then
|
||||
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
||||
for threads in ${cpu_threads_list[*]}; do
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/${_model_name}_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
command="${_python} ${_script} -o ${use_gpu_key}=${use_gpu} -o ${use_mkldnn_key}=${use_mkldnn} -o ${cpu_threads_key}=${threads} -o ${infer_model_key}=${_model_dir} -o ${batch_size_key}=${batch_size} -o ${image_dir_key}=${_img_dir} -o ${save_log_key}=${_save_log_path} -o benchmark=True"
|
||||
eval $command
|
||||
status_check $? "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
for use_trt in ${use_trt_list[*]}; do
|
||||
for precision in ${precision_list[*]}; do
|
||||
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/${_model_name}_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
command="${_python} ${_script} -o ${use_gpu_key}=${use_gpu} -o ${use_trt_key}=${use_trt} -o ${precision_key}=${precision} -o ${infer_model_key}=${_model_dir} -o ${batch_size_key}=${batch_size} -o ${image_dir_key}=${_img_dir} -o ${save_log_key}=${_save_log_path} -o benchmark=True"
|
||||
eval $command
|
||||
status_check $? "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
if [ ${MODE} != "infer" ]; then
|
||||
|
||||
IFS="|"
|
||||
for gpu in ${gpu_list[*]}; do
|
||||
use_gpu=True
|
||||
if [ ${gpu} = "-1" ];then
|
||||
use_gpu=False
|
||||
env=""
|
||||
elif [ ${#gpu} -le 1 ];then
|
||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||
eval ${env}
|
||||
elif [ ${#gpu} -le 15 ];then
|
||||
IFS=","
|
||||
array=(${gpu})
|
||||
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||
IFS="|"
|
||||
else
|
||||
IFS=";"
|
||||
array=(${gpu})
|
||||
ips=${array[0]}
|
||||
gpu=${array[1]}
|
||||
IFS="|"
|
||||
env=" "
|
||||
fi
|
||||
for model_name in ${model_name_list[*]}; do
|
||||
# not set epoch when whole_train_infer
|
||||
if [ ${MODE} != "whole_train_infer" ]; then
|
||||
set_epoch="-o ${epoch_key}=${epoch_num}"
|
||||
else
|
||||
set_epoch=" "
|
||||
fi
|
||||
save_log="${LOG_PATH}/${model_name}_gpus_${gpu}"
|
||||
# train with cpu
|
||||
if [ ${gpu} = "-1" ];then
|
||||
cmd="${python} ${train_py} -o Arch.name=${model_name} -o Global.device=cpu -o ${save_model_key}=${save_log} ${set_epoch}"
|
||||
# train with single gpu
|
||||
elif [ ${#gpu} -le 2 ];then # train with single gpu
|
||||
cmd="${python} ${train_py} -o Arch.name=${model_name} -o ${save_model_key}=${save_log} ${set_epoch}"
|
||||
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${train_py} -o Arch.name=${model_name} -o ${save_model_key}=${save_log} ${set_epoch}"
|
||||
else # train with multi-machine
|
||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${train_py} -o Arch.name=${model_name} -c ${save_model_key}=${save_log} ${set_epoch}"
|
||||
fi
|
||||
# run train
|
||||
eval $cmd
|
||||
status_check $? "${cmd}" "${status_log}"
|
||||
|
||||
# run eval
|
||||
eval_cmd="${python} ${eval_py} -o Arch.name=${model_name} -o ${pretrain_model_key}=${save_log}/${model_name}/best_model"
|
||||
eval $eval_cmd
|
||||
status_check $? "${eval_cmd}" "${status_log}"
|
||||
|
||||
# run export model
|
||||
save_infer_path="${save_log}"
|
||||
export_cmd="${python} ${norm_export} -o Arch.name=${model_name} -o ${pretrain_model_key}=${save_log}/${model_name}/best_model -o ${save_infer_key}=${save_infer_path}"
|
||||
eval $export_cmd
|
||||
status_check $? "${export_cmd}" "${status_log}"
|
||||
|
||||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
cd deploy
|
||||
func_inference "${python}" "${inference_py}" "../${save_log}" "../${LOG_PATH}" "../${infer_img_dir}" model_name
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
cd ..
|
||||
done
|
||||
done
|
||||
|
||||
else
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
echo $env
|
||||
# export inference model
|
||||
mkdir -p inference_models
|
||||
for model_name in ${model_name_list[*]}; do
|
||||
export_cmd="${python} ${norm_export} -o Arch.name=${model_name} -o ${pretrain_model_key}=pretrained_models/${model_name}_pretrained -o ${save_infer_key}=./inference_models/${model_name}"
|
||||
eval $export_cmd
|
||||
done
|
||||
#run inference
|
||||
cd deploy
|
||||
for model_name in ${model_name_list[*]}; do
|
||||
func_inference "${python}" "${inference_py}" "../inference_models/${model_name}" "../${LOG_PATH}" "../${infer_img_dir}"
|
||||
done
|
||||
cd ..
|
||||
fi
|
Loading…
Reference in New Issue