Revert "support ShiTu"

This reverts commit 9beb154bc3.
pull/2701/head
Tingquan Gao 2023-03-14 16:16:40 +08:00
parent 7865207096
commit 8002ccf4b6
6 changed files with 176 additions and 197 deletions

View File

@ -88,15 +88,14 @@ def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
random.seed(worker_seed)
def build_dataloader(config, *mode, seed=None):
dataloader_config = config["DataLoader"]
for m in mode:
assert m in [
def build_dataloader(config, mode, seed=None):
assert mode in [
'Train', 'Eval', 'Test', 'Gallery', 'Query', 'UnLabelTrain'
], "Dataset mode should be Train, Eval, Test, Gallery, Query, UnLabelTrain"
assert m in dataloader_config.keys(), "{} config not in yaml".format(m)
dataloader_config = dataloader_config[m]
assert mode in config["DataLoader"].keys(), "{} config not in yaml".format(
mode)
dataloader_config = config["DataLoader"][mode]
class_num = config["Arch"].get("class_num", None)
epochs = config["Global"]["epochs"]
use_dali = config["Global"].get("use_dali", False)

View File

@ -22,7 +22,6 @@ from paddle import nn
import numpy as np
import random
from ..utils.amp import AMPForwardDecorator
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config

View File

@ -13,17 +13,17 @@
# limitations under the License.
from .classification import ClassEval
from .retrieval import RetrievalEval
from .retrieval import retrieval_eval
from .adaface import adaface_eval
def build_eval_func(config, mode, model):
if mode not in ["eval", "train"]:
return None
task = config["Global"].get("task", "classification")
if task == "classification":
eval_mode = config["Global"].get("eval_mode", None)
if eval_mode is None:
config["Global"]["eval_mode"] = "classification"
return ClassEval(config, mode, model)
elif task == "retrieval":
return RetrievalEval(config, mode, model)
else:
raise Exception()
return getattr(sys.modules[__name__], eval_mode + "_eval")(config,
mode, model)

View File

@ -21,50 +21,25 @@ import numpy as np
import paddle
import scipy
from ...utils.misc import AverageMeter
from ...utils import all_gather, logger
from ...data import build_dataloader
from ...loss import build_loss
from ...metric import build_metrics
from ppcls.utils import all_gather, logger
class RetrievalEval(object):
def __init__(self, config, mode, model):
self.config = config
self.model = model
self.print_batch_step = self.config["Global"]["print_batch_step"]
self.use_dali = self.config["Global"].get("use_dali", False)
self.eval_metric_func = build_metrics(self.config, "Eval")
self.eval_loss_func = build_loss(self.config, "Eval")
self.output_info = dict()
self.gallery_query_dataloader = None
if len(self.config["DataLoader"]["Eval"].keys()) == 1:
self.gallery_query_dataloader = build_dataloader(self.config,
"Eval")
else:
self.gallery_dataloader = build_dataloader(self.config, "Eval",
"Gallery")
self.query_dataloader = build_dataloader(self.config, "Eval",
"Query")
def __call__(self, epoch_id=0):
self.model.eval()
def retrieval_eval(engine, epoch_id=0):
engine.model.eval()
# step1. prepare query and gallery features
if self.gallery_query_dataloader is not None:
gallery_feat, gallery_label, gallery_camera = self.compute_feature(
"gallery_query")
if engine.gallery_query_dataloader is not None:
gallery_feat, gallery_label, gallery_camera = compute_feature(
engine, "gallery_query")
query_feat, query_label, query_camera = gallery_feat, gallery_label, gallery_camera
else:
gallery_feat, gallery_label, gallery_camera = self.compute_feature(
"gallery")
query_feat, query_label, query_camera = self.compute_feature(
gallery_feat, gallery_label, gallery_camera = compute_feature(
engine, "gallery")
query_feat, query_label, query_camera = compute_feature(engine,
"query")
# step2. split features into feature blocks for saving memory
num_query = len(query_feat)
block_size = self.config["Global"].get("sim_block_size", 64)
block_size = engine.config["Global"].get("sim_block_size", 64)
sections = [block_size] * (num_query // block_size)
if num_query % block_size > 0:
sections.append(num_query % block_size)
@ -76,15 +51,15 @@ class RetrievalEval(object):
metric_key = None
# step3. compute metric
if self.eval_loss_func is None:
if engine.eval_loss_func is None:
metric_dict = {metric_key: 0.0}
else:
use_reranking = self.config["Global"].get("re_ranking", False)
use_reranking = engine.config["Global"].get("re_ranking", False)
logger.info(f"re_ranking={use_reranking}")
if use_reranking:
# compute distance matrix
distmat = compute_re_ranking_dist(
query_feat, gallery_feat, self.config["Global"].get(
query_feat, gallery_feat, engine.config["Global"].get(
"feature_normalize", True), 20, 6, 0.3)
# exclude illegal distance
if query_camera is not None:
@ -92,12 +67,11 @@ class RetrievalEval(object):
label_mask = query_label != gallery_label.t()
keep_mask = label_mask | camera_mask
distmat = keep_mask.astype(query_feat.dtype) * distmat + (
~keep_mask).astype(query_feat.dtype) * (distmat.max() +
1)
~keep_mask).astype(query_feat.dtype) * (distmat.max() + 1)
else:
keep_mask = None
# compute metric with all samples
metric_dict = self.eval_metric_func(-distmat, query_label,
metric_dict = engine.eval_metric_func(-distmat, query_label,
gallery_label, keep_mask)
else:
metric_dict = defaultdict(float)
@ -116,13 +90,13 @@ class RetrievalEval(object):
else:
keep_mask = None
# compute metric by block
metric_block = self.eval_metric_func(
metric_block = engine.eval_metric_func(
distmat, query_label_blocks[block_idx], gallery_label,
keep_mask)
# accumulate metric
for key in metric_block:
metric_dict[key] += metric_block[
key] * block_feat.shape[0] / num_query
metric_dict[key] += metric_block[key] * block_feat.shape[
0] / num_query
metric_info_list = []
for key, value in metric_dict.items():
@ -134,13 +108,14 @@ class RetrievalEval(object):
return metric_dict[metric_key]
def compute_feature(self, name="gallery"):
def compute_feature(engine, name="gallery"):
if name == "gallery":
dataloader = self.gallery_dataloader
dataloader = engine.gallery_dataloader
elif name == "query":
dataloader = self.query_dataloader
dataloader = engine.query_dataloader
elif name == "gallery_query":
dataloader = self.gallery_query_dataloader
dataloader = engine.gallery_query_dataloader
else:
raise ValueError(
f"Only support gallery or query or gallery_query dataset, but got {name}"
@ -151,7 +126,7 @@ class RetrievalEval(object):
all_camera = []
has_camera = False
for idx, batch in enumerate(dataloader): # load is very time-consuming
if idx % self.print_batch_step == 0:
if idx % engine.config["Global"]["print_batch_step"] == 0:
logger.info(
f"{name} feature calculation process: [{idx}/{len(dataloader)}]"
)
@ -161,14 +136,20 @@ class RetrievalEval(object):
if len(batch) >= 3:
has_camera = True
batch[2] = batch[2].reshape([-1, 1]).astype("int64")
out = self.model(batch)
if engine.amp and engine.amp_eval:
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=engine.amp_level):
out = engine.model(batch[0])
else:
out = engine.model(batch[0])
if "Student" in out:
out = out["Student"]
# get features
if self.config["Global"].get("retrieval_feature_from",
if engine.config["Global"].get("retrieval_feature_from",
"features") == "features":
# use output from neck as feature
batch_feat = out["features"]
@ -177,14 +158,13 @@ class RetrievalEval(object):
batch_feat = out["backbone"]
# do norm(optional)
if self.config["Global"].get("feature_normalize", True):
if engine.config["Global"].get("feature_normalize", True):
batch_feat = paddle.nn.functional.normalize(batch_feat, p=2)
# do binarize(optional)
if self.config["Global"].get("feature_binarize") == "round":
batch_feat = paddle.round(batch_feat).astype(
"float32") * 2.0 - 1.0
elif self.config["Global"].get("feature_binarize") == "sign":
if engine.config["Global"].get("feature_binarize") == "round":
batch_feat = paddle.round(batch_feat).astype("float32") * 2.0 - 1.0
elif engine.config["Global"].get("feature_binarize") == "sign":
batch_feat = paddle.sign(batch_feat).astype("float32")
if paddle.distributed.get_world_size() > 1:
@ -198,7 +178,7 @@ class RetrievalEval(object):
if has_camera:
all_camera.append(batch[2])
if self.use_dali:
if engine.use_dali:
dataloader.reset()
all_feat = paddle.concat(all_feat)
@ -208,7 +188,7 @@ class RetrievalEval(object):
else:
all_camera = None
# discard redundant padding sample(s) at the end
total_samples = dataloader.size if self.use_dali else len(
total_samples = dataloader.size if engine.use_dali else len(
dataloader.dataset)
all_feat = all_feat[:total_samples]
all_label = all_label[:total_samples]

View File

@ -22,8 +22,9 @@ from .train_progressive import train_epoch_progressive
def build_train_func(config, mode, model, eval_func):
if mode != "train":
return None
task = config["Global"].get("task", "classification")
if task == "classification" or task == "retrieval":
train_mode = config["Global"].get("task", None)
if train_mode is None:
config["Global"]["task"] = "classification"
return ClassTrainer(config, model, eval_func)
else:
return getattr(sys.modules[__name__], "train_epoch_" + train_mode)(

View File

@ -15,7 +15,7 @@ from __future__ import absolute_import, division, print_function
from ppcls.data import build_dataloader
from ppcls.utils import logger, type_name
from .classification import ClassTrainer
from .regular_train_epoch import regular_train_epoch
def train_epoch_progressive(engine, epoch_id, print_batch_step):