From 85f497cbecca0b294e09c5532581b4018e0dc734 Mon Sep 17 00:00:00 2001 From: gaotingquan Date: Wed, 2 Mar 2022 08:45:18 +0000 Subject: [PATCH] docs: fix link --- .../ImageNet_models_en.md | 8 +- docs/en/models/models_intro_en.md | 99 +++++++++---------- docs/zh_CN/models/models_intro.md | 99 +++++++++---------- 3 files changed, 102 insertions(+), 104 deletions(-) diff --git a/docs/en/algorithm_introduction/ImageNet_models_en.md b/docs/en/algorithm_introduction/ImageNet_models_en.md index 580aeaa1e..ccc1affbf 100644 --- a/docs/en/algorithm_introduction/ImageNet_models_en.md +++ b/docs/en/algorithm_introduction/ImageNet_models_en.md @@ -63,7 +63,7 @@ Accuracy and inference time of the prtrained models based on SSLD distillation a | Model | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | Pretrained Model Download Address | Inference Model Download Address | |---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------| -| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)   | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld.tar)   | +| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)   | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar)   | | ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) | | ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) | | Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 3.59 | 6.35 | 9.50 | 4.28 | 25.76 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar) | @@ -408,8 +408,8 @@ The accuracy and speed indicators of SwinTransformer series models are shown in | SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) | | SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) | | SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) | -| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar) | -| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar) | +| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar) | +| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar) | [1]:It is pre-trained based on the ImageNet22k dataset, and then transferred and learned from the ImageNet1k dataset. @@ -421,7 +421,7 @@ The accuracy and speed indicators of LeViT series models are shown in the follow | Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(M) | Params(M) | Pretrained Model Download Address | Inference Model Download Address | | ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | -| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar) | +| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128S_infer.tar) | | LeViT_128 | 0.7810 | 0.9371 | | | | 365 | 8.87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) | | LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) | | LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) | diff --git a/docs/en/models/models_intro_en.md b/docs/en/models/models_intro_en.md index 8d35459b6..6a256f82f 100644 --- a/docs/en/models/models_intro_en.md +++ b/docs/en/models/models_intro_en.md @@ -39,42 +39,41 @@ python tools/infer/predict.py \ ## Pretrained model list and download address - ResNet and ResNet_vd series - ResNet series[[1](#ref1)]([paper link](http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html)) - - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams) - - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams) - - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams) - - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams) - - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams) + - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams) + - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams) + - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams) + - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams) + - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams) - ResNet_vc、ResNet_vd series[[2](#ref2)]([paper link](https://arxiv.org/abs/1812.01187)) - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) - - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams) - - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams) - - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) - - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams) - - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams) - - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams) - - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams) - - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams) - - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) + - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams) + - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams) + - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) + - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams) + - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams) + - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams) + - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams) + - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) - [ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) - [Fix_ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNet50_vd_ssld_v2_pretrained.pdparams) - - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) + - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) - Mobile and Embedded Vision Applications Network series - MobileNetV3 series[[3](#ref3)]([paper link](https://arxiv.org/abs/1905.02244)) - - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams) - - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams) - - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams) - - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams) - - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams) - - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams) - - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams) - - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams) - - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams) - - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams) - - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) + - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams) + - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams) + - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams) + - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams) + - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams) + - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) + - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) + - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) + - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams) + - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams) + - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) - [MobileNetV3_large_x1_0_ssld_int8]()(coming soon) - - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) + - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) - MobileNetV2 series[[4](#ref4)]([paper link](https://arxiv.org/abs/1801.04381)) - [MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) - [MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) @@ -84,11 +83,11 @@ python tools/infer/predict.py \ - [MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) - [MobileNetV2_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) - MobileNetV1 series[[5](#ref5)]([paper link](https://arxiv.org/abs/1704.04861)) - - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams) - - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams) - - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams) - - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams) - - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) + - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams) + - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams) + - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams) + - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams) + - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) - ShuffleNetV2 series[[6](#ref6)]([paper link](https://arxiv.org/abs/1807.11164)) - [ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) - [ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) @@ -144,7 +143,7 @@ python tools/infer/predict.py \ - GoogLeNet series[[10](#ref10)]([paper link](https://arxiv.org/pdf/1409.4842.pdf)) - [GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) - InceptionV3 series[[26](#ref26)]([paper link](https://arxiv.org/abs/1512.00567)) - - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams) + - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) - InceptionV4 series[[11](#ref11)]([paper link](https://arxiv.org/abs/1602.07261)) - [InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) - Xception series[[12](#ref12)]([paper link](http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html)) @@ -157,16 +156,16 @@ python tools/infer/predict.py \ - HRNet series - HRNet series[[13](#ref13)]([paper link](https://arxiv.org/abs/1908.07919)) - - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams) - - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) - - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams) - - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams) - - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams) - - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams) - - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) - - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) - - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams) - - [SE_HRNet_W64_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) + - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) + - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) + - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) + - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) + - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) + - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) + - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) + - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) + - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) + - [SE_HRNet_W64_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) - DPN and DenseNet series @@ -218,11 +217,11 @@ python tools/infer/predict.py \ - [SwinTransformer_small_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) - [SwinTransformer_base_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) - [SwinTransformer_base_patch4_window12_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) - - [SwinTransformer_base_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k_pretrained.pdparams) + - [SwinTransformer_base_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) - [SwinTransformer_base_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) - - [SwinTransformer_large_patch4_window12_384_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k_pretrained.pdparams) + - [SwinTransformer_large_patch4_window12_384_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) - [SwinTransformer_large_patch4_window12_384_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) - - [SwinTransformer_large_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k_pretrained.pdparams) + - [SwinTransformer_large_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) - [SwinTransformer_large_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) @@ -234,10 +233,10 @@ python tools/infer/predict.py \ - [SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) - [SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) - VGG series[[20](#ref20)]([paper link](https://arxiv.org/abs/1409.1556)) - - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams) - - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams) - - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams) - - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams) + - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) + - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) + - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) + - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) - DarkNet series[[21](#ref21)]([paper link](https://arxiv.org/abs/1506.02640)) - [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) diff --git a/docs/zh_CN/models/models_intro.md b/docs/zh_CN/models/models_intro.md index f529307f7..eeb3b271d 100644 --- a/docs/zh_CN/models/models_intro.md +++ b/docs/zh_CN/models/models_intro.md @@ -32,24 +32,23 @@ - ResNet 及其 Vd 系列 - ResNet 系列[[1](#ref1)]([论文地址](http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html)) - - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams) - - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams) - - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams) - - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams) - - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams) + - [ResNet18](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams) + - [ResNet34](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams) + - [ResNet50](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams) + - [ResNet101](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams) + - [ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams) - ResNet_vc、ResNet_vd 系列[[2](#ref2)]([论文地址](https://arxiv.org/abs/1812.01187)) - [ResNet50_vc](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) - - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams) - - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams) - - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) - - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams) - - [ResNet50_vd_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams) - - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams) - - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams) - - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams) - - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) + - [ResNet18_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams) + - [ResNet34_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams) + - [ResNet34_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) + - [ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams) + - [ResNet101_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams) + - [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams) + - [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams) + - [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) - [Fix_ResNet50_vd_ssld_v2](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNet50_vd_ssld_v2_pretrained.pdparams) - - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) + - [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) - 轻量级模型系列 @@ -66,19 +65,19 @@ - [PPLCNet_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams) - [PPLCNet_x2_5_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams) - MobileNetV3 系列[[3](#ref3)]([论文地址](https://arxiv.org/abs/1905.02244)) - - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams) - - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams) - - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams) - - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams) - - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams) - - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams) - - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams) - - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams) - - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams) - - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams) - - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) + - [MobileNetV3_large_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams) + - [MobileNetV3_large_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams) + - [MobileNetV3_large_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams) + - [MobileNetV3_large_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams) + - [MobileNetV3_large_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams) + - [MobileNetV3_small_x0_35](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) + - [MobileNetV3_small_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) + - [MobileNetV3_small_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) + - [MobileNetV3_small_x1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams) + - [MobileNetV3_small_x1_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams) + - [MobileNetV3_large_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) - [MobileNetV3_large_x1_0_ssld_int8]()(coming soon) - - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) + - [MobileNetV3_small_x1_0_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) - MobileNetV2 系列[[4](#ref4)]([论文地址](https://arxiv.org/abs/1801.04381)) - [MobileNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) - [MobileNetV2_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) @@ -88,11 +87,11 @@ - [MobileNetV2_x2_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) - [MobileNetV2_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) - MobileNetV1 系列[[5](#ref5)]([论文地址](https://arxiv.org/abs/1704.04861)) - - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams) - - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams) - - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams) - - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams) - - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) + - [MobileNetV1_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams) + - [MobileNetV1_x0_5](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams) + - [MobileNetV1_x0_75](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams) + - [MobileNetV1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams) + - [MobileNetV1_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) - ShuffleNetV2 系列[[6](#ref6)]([论文地址](https://arxiv.org/abs/1807.11164)) - [ShuffleNetV2_x0_25](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) - [ShuffleNetV2_x0_33](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) @@ -158,7 +157,7 @@ - GoogLeNet 系列[[10](#ref10)]([论文地址](https://arxiv.org/pdf/1409.4842.pdf)) - [GoogLeNet](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) - InceptionV3 系列[[26](#ref26)]([论文地址](https://arxiv.org/abs/1512.00567)) - - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams) + - [InceptionV3](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) - InceptionV4 系列[[11](#ref11)]([论文地址](https://arxiv.org/abs/1602.07261)) - [InceptionV4](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) - Xception 系列[[12](#ref12)]([论文地址](http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html)) @@ -171,16 +170,16 @@ - HRNet 系列 - HRNet 系列[[13](#ref13)]([论文地址](https://arxiv.org/abs/1908.07919)) - - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams) - - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) - - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams) - - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams) - - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams) - - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams) - - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) - - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) - - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams) - - [SE_HRNet_W64_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) + - [HRNet_W18_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) + - [HRNet_W18_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) + - [HRNet_W30_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) + - [HRNet_W32_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) + - [HRNet_W40_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) + - [HRNet_W44_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) + - [HRNet_W48_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) + - [HRNet_W48_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) + - [HRNet_W64_C](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) + - [SE_HRNet_W64_C_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) - DPN 与 DenseNet 系列 - DPN 系列[[14](#ref14)]([论文地址](https://arxiv.org/abs/1707.01629)) @@ -228,11 +227,11 @@ - [SwinTransformer_small_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) - [SwinTransformer_base_patch4_window7_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) - [SwinTransformer_base_patch4_window12_384](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) - - [SwinTransformer_base_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22k_pretrained.pdparams) + - [SwinTransformer_base_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) - [SwinTransformer_base_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) - - [SwinTransformer_large_patch4_window12_384_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22k_pretrained.pdparams) + - [SwinTransformer_large_patch4_window12_384_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) - [SwinTransformer_large_patch4_window12_384_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) - - [SwinTransformer_large_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22k_pretrained.pdparams) + - [SwinTransformer_large_patch4_window7_224_22k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) - [SwinTransformer_large_patch4_window7_224_22kto1k](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) - ViT 系列[[31](#ref31)]([论文地址](https://arxiv.org/pdf/2010.11929.pdf)) - [ViT_small_patch16_224](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) @@ -274,10 +273,10 @@ - [SqueezeNet1_0](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) - [SqueezeNet1_1](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) - VGG 系列[[20](#ref20)]([论文地址](https://arxiv.org/abs/1409.1556)) - - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams) - - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams) - - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams) - - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams) + - [VGG11](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) + - [VGG13](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) + - [VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) + - [VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) - DarkNet 系列[[21](#ref21)]([论文地址](https://arxiv.org/abs/1506.02640)) - [DarkNet53](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) - RepVGG 系列[[36](#ref36)]([论文地址](https://arxiv.org/pdf/2101.03697.pdf))