add mobilenet_v1.py to legendary models

pull/749/head
Bin Lu 2021-05-27 12:10:37 +08:00 committed by GitHub
parent 83056d44d5
commit 8644331f07
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 268 additions and 0 deletions

View File

@ -0,0 +1,268 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import KaimingNormal
import math
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
__all__ = [
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1"
]
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name=name + "_weights"),
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name + "_bn_scale"),
bias_attr=ParamAttr(name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class DepthwiseSeparable(TheseusLayer):
def __init__(self,
num_channels,
num_filters1,
num_filters2,
num_groups,
stride,
scale,
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
name=name + "_dw")
self._pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0,
name=name + "_sep")
def forward(self, inputs):
y = self._depthwise_conv(inputs)
y = self._pointwise_conv(y)
return y
class MobileNet(TheseusLayer):
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNet, self).__init__()
self.scale = scale
self.block_list = []
self.conv1 = ConvBNLayer(
num_channels=3,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1,
name="conv1")
conv2_1 = self.add_sublayer(
"conv2_1",
sublayer=DepthwiseSeparable(
num_channels=int(32 * scale),
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale,
name="conv2_1"))
self.block_list.append(conv2_1)
conv2_2 = self.add_sublayer(
"conv2_2",
sublayer=DepthwiseSeparable(
num_channels=int(64 * scale),
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale,
name="conv2_2"))
self.block_list.append(conv2_2)
conv3_1 = self.add_sublayer(
"conv3_1",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale,
name="conv3_1"))
self.block_list.append(conv3_1)
conv3_2 = self.add_sublayer(
"conv3_2",
sublayer=DepthwiseSeparable(
num_channels=int(128 * scale),
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale,
name="conv3_2"))
self.block_list.append(conv3_2)
conv4_1 = self.add_sublayer(
"conv4_1",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale,
name="conv4_1"))
self.block_list.append(conv4_1)
conv4_2 = self.add_sublayer(
"conv4_2",
sublayer=DepthwiseSeparable(
num_channels=int(256 * scale),
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale,
name="conv4_2"))
self.block_list.append(conv4_2)
for i in range(5):
conv5 = self.add_sublayer(
"conv5_" + str(i + 1),
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale,
name="conv5_" + str(i + 1)))
self.block_list.append(conv5)
conv5_6 = self.add_sublayer(
"conv5_6",
sublayer=DepthwiseSeparable(
num_channels=int(512 * scale),
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale,
name="conv5_6"))
self.block_list.append(conv5_6)
conv6 = self.add_sublayer(
"conv6",
sublayer=DepthwiseSeparable(
num_channels=int(1024 * scale),
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale,
name="conv6"))
self.block_list.append(conv6)
self.pool2d_avg = AdaptiveAvgPool2D(1)
self.out = Linear(
int(1024 * scale),
class_dim,
weight_attr=ParamAttr(
initializer=KaimingNormal(), name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
def forward(self, inputs):
y = self.conv1(inputs)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.flatten(y, start_axis=1, stop_axis=-1)
y = self.out(y)
return y
def MobileNetV1_x0_25(**args):
model = MobileNet(scale=0.25, **args)
return model
def MobileNetV1_x0_5(**args):
model = MobileNet(scale=0.5, **args)
return model
def MobileNetV1_x0_75(**args):
model = MobileNet(scale=0.75, **args)
return model
def MobileNetV1(**args):
model = MobileNet(scale=1.0, **args)
return model