add re-ranking code
parent
283ae9b327
commit
88295413f5
|
@ -12,6 +12,7 @@ Global:
|
||||||
use_visualdl: False
|
use_visualdl: False
|
||||||
eval_mode: "retrieval"
|
eval_mode: "retrieval"
|
||||||
retrieval_feature_from: "backbone" # 'backbone' or 'neck'
|
retrieval_feature_from: "backbone" # 'backbone' or 'neck'
|
||||||
|
re_ranking: False
|
||||||
# used for static mode and model export
|
# used for static mode and model export
|
||||||
image_shape: [3, 256, 128]
|
image_shape: [3, 256, 128]
|
||||||
save_inference_dir: "./inference"
|
save_inference_dir: "./inference"
|
||||||
|
|
|
@ -12,6 +12,7 @@ Global:
|
||||||
use_visualdl: False
|
use_visualdl: False
|
||||||
eval_mode: "retrieval"
|
eval_mode: "retrieval"
|
||||||
retrieval_feature_from: "features" # 'backbone' or 'features'
|
retrieval_feature_from: "features" # 'backbone' or 'features'
|
||||||
|
re_ranking: False
|
||||||
# used for static mode and model export
|
# used for static mode and model export
|
||||||
image_shape: [3, 256, 128]
|
image_shape: [3, 256, 128]
|
||||||
save_inference_dir: "./inference"
|
save_inference_dir: "./inference"
|
||||||
|
|
|
@ -12,6 +12,7 @@ Global:
|
||||||
use_visualdl: False
|
use_visualdl: False
|
||||||
eval_mode: "retrieval"
|
eval_mode: "retrieval"
|
||||||
retrieval_feature_from: "features" # 'backbone' or 'features'
|
retrieval_feature_from: "features" # 'backbone' or 'features'
|
||||||
|
re_ranking: False
|
||||||
# used for static mode and model export
|
# used for static mode and model export
|
||||||
image_shape: [3, 256, 128]
|
image_shape: [3, 256, 128]
|
||||||
save_inference_dir: "./inference"
|
save_inference_dir: "./inference"
|
||||||
|
|
|
@ -16,6 +16,9 @@ from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
import platform
|
import platform
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
import paddle
|
import paddle
|
||||||
from ppcls.utils import logger
|
from ppcls.utils import logger
|
||||||
|
|
||||||
|
@ -48,34 +51,68 @@ def retrieval_eval(engine, epoch_id=0):
|
||||||
if engine.eval_loss_func is None:
|
if engine.eval_loss_func is None:
|
||||||
metric_dict = {metric_key: 0.}
|
metric_dict = {metric_key: 0.}
|
||||||
else:
|
else:
|
||||||
|
reranking_flag = engine.config['Global'].get('re_ranking', False)
|
||||||
|
logger.info(f"re_ranking={reranking_flag}")
|
||||||
metric_dict = dict()
|
metric_dict = dict()
|
||||||
for block_idx, block_fea in enumerate(fea_blocks):
|
if reranking_flag:
|
||||||
similarity_matrix = paddle.matmul(
|
# set the order from small to large
|
||||||
block_fea, gallery_feas, transpose_y=True)
|
for i in range(len(engine.eval_metric_func.metric_func_list)):
|
||||||
if query_query_id is not None:
|
if hasattr(engine.eval_metric_func.metric_func_list[i], 'descending') \
|
||||||
query_id_block = query_id_blocks[block_idx]
|
and engine.eval_metric_func.metric_func_list[i].descending is True:
|
||||||
query_id_mask = (query_id_block != gallery_unique_id.t())
|
engine.eval_metric_func.metric_func_list[
|
||||||
|
i].descending = False
|
||||||
|
logger.info(
|
||||||
|
f"set {engine.eval_metric_func.metric_func_list[i].__class__.__name__}.descending to False when re_ranking=True"
|
||||||
|
)
|
||||||
|
|
||||||
image_id_block = image_id_blocks[block_idx]
|
# compute distance matrix(The smaller the value, the more similar)
|
||||||
image_id_mask = (image_id_block != gallery_img_id.t())
|
distmat = re_ranking(
|
||||||
|
query_feas, gallery_feas, k1=20, k2=6, lambda_value=0.3)
|
||||||
|
distmat = paddle.to_tensor(distmat)
|
||||||
|
|
||||||
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
|
# compute keep mask
|
||||||
similarity_matrix = similarity_matrix * keep_mask.astype(
|
query_id_mask = (query_query_id != gallery_unique_id.t())
|
||||||
"float32")
|
image_id_mask = (query_img_id != gallery_img_id.t())
|
||||||
else:
|
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
|
||||||
keep_mask = None
|
|
||||||
|
|
||||||
metric_tmp = engine.eval_metric_func(similarity_matrix,
|
# set inf(1e9) distance to those exist in gallery
|
||||||
image_id_blocks[block_idx],
|
distmat = distmat * keep_mask.astype("float32")
|
||||||
|
inf_mat = (paddle.logical_not(keep_mask).astype("float32")) * 1e20
|
||||||
|
distmat = distmat + inf_mat
|
||||||
|
|
||||||
|
# compute metric
|
||||||
|
metric_tmp = engine.eval_metric_func(distmat, query_img_id,
|
||||||
gallery_img_id, keep_mask)
|
gallery_img_id, keep_mask)
|
||||||
|
|
||||||
for key in metric_tmp:
|
for key in metric_tmp:
|
||||||
if key not in metric_dict:
|
metric_dict[key] = metric_tmp[key]
|
||||||
metric_dict[key] = metric_tmp[key] * block_fea.shape[
|
else:
|
||||||
0] / len(query_feas)
|
for block_idx, block_fea in enumerate(fea_blocks):
|
||||||
|
similarity_matrix = paddle.matmul(
|
||||||
|
block_fea, gallery_feas, transpose_y=True) # [n,m]
|
||||||
|
if query_query_id is not None:
|
||||||
|
query_id_block = query_id_blocks[block_idx]
|
||||||
|
query_id_mask = (query_id_block != gallery_unique_id.t())
|
||||||
|
|
||||||
|
image_id_block = image_id_blocks[block_idx]
|
||||||
|
image_id_mask = (image_id_block != gallery_img_id.t())
|
||||||
|
|
||||||
|
keep_mask = paddle.logical_or(query_id_mask, image_id_mask)
|
||||||
|
similarity_matrix = similarity_matrix * keep_mask.astype(
|
||||||
|
"float32")
|
||||||
else:
|
else:
|
||||||
metric_dict[key] += metric_tmp[key] * block_fea.shape[
|
keep_mask = None
|
||||||
0] / len(query_feas)
|
|
||||||
|
metric_tmp = engine.eval_metric_func(
|
||||||
|
similarity_matrix, image_id_blocks[block_idx],
|
||||||
|
gallery_img_id, keep_mask)
|
||||||
|
|
||||||
|
for key in metric_tmp:
|
||||||
|
if key not in metric_dict:
|
||||||
|
metric_dict[key] = metric_tmp[key] * block_fea.shape[
|
||||||
|
0] / len(query_feas)
|
||||||
|
else:
|
||||||
|
metric_dict[key] += metric_tmp[key] * block_fea.shape[
|
||||||
|
0] / len(query_feas)
|
||||||
|
|
||||||
metric_info_list = []
|
metric_info_list = []
|
||||||
for key in metric_dict:
|
for key in metric_dict:
|
||||||
|
@ -185,3 +222,109 @@ def cal_feature(engine, name='gallery'):
|
||||||
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
|
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
|
||||||
name, all_feas.shape))
|
name, all_feas.shape))
|
||||||
return all_feas, all_img_id, all_unique_id
|
return all_feas, all_img_id, all_unique_id
|
||||||
|
|
||||||
|
|
||||||
|
def re_ranking(query_feas: paddle.Tensor,
|
||||||
|
gallery_feas: paddle.Tensor,
|
||||||
|
k1: int=20,
|
||||||
|
k2: int=6,
|
||||||
|
lambda_value: int=0.5,
|
||||||
|
local_distmat: Optional[np.ndarray]=None,
|
||||||
|
only_local: bool=False) -> paddle.Tensor:
|
||||||
|
"""re-ranking, most computed with numpy
|
||||||
|
|
||||||
|
code heavily based on
|
||||||
|
https://github.com/michuanhaohao/reid-strong-baseline/blob/3da7e6f03164a92e696cb6da059b1cd771b0346d/utils/reid_metric.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
query_feas (paddle.Tensor): query features, [num_query, num_features]
|
||||||
|
gallery_feas (paddle.Tensor): gallery features, [num_gallery, num_features]
|
||||||
|
k1 (int, optional): k1. Defaults to 20.
|
||||||
|
k2 (int, optional): k2. Defaults to 6.
|
||||||
|
lambda_value (int, optional): lambda. Defaults to 0.5.
|
||||||
|
local_distmat (Optional[np.ndarray], optional): local_distmat. Defaults to None.
|
||||||
|
only_local (bool, optional): only_local. Defaults to False.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
paddle.Tensor: final_dist matrix after re-ranking, [num_query, num_gallery]
|
||||||
|
"""
|
||||||
|
query_num = query_feas.shape[0]
|
||||||
|
all_num = query_num + gallery_feas.shape[0]
|
||||||
|
if only_local:
|
||||||
|
original_dist = local_distmat
|
||||||
|
else:
|
||||||
|
feat = paddle.concat([query_feas, gallery_feas])
|
||||||
|
logger.info('using GPU to compute original distance')
|
||||||
|
|
||||||
|
# L2 distance
|
||||||
|
distmat = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]) + \
|
||||||
|
paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([all_num, all_num]).t()
|
||||||
|
distmat = distmat.addmm(x=feat, y=feat.t(), alpha=-2.0, beta=1.0)
|
||||||
|
|
||||||
|
original_dist = distmat.cpu().numpy()
|
||||||
|
del feat
|
||||||
|
if local_distmat is not None:
|
||||||
|
original_dist = original_dist + local_distmat
|
||||||
|
|
||||||
|
gallery_num = original_dist.shape[0]
|
||||||
|
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
|
||||||
|
V = np.zeros_like(original_dist).astype(np.float16)
|
||||||
|
initial_rank = np.argsort(original_dist).astype(np.int32)
|
||||||
|
logger.info('starting re_ranking')
|
||||||
|
for i in range(all_num):
|
||||||
|
# k-reciprocal neighbors
|
||||||
|
forward_k_neigh_index = initial_rank[i, :k1 + 1]
|
||||||
|
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
|
||||||
|
fi = np.where(backward_k_neigh_index == i)[0]
|
||||||
|
k_reciprocal_index = forward_k_neigh_index[fi]
|
||||||
|
k_reciprocal_expansion_index = k_reciprocal_index
|
||||||
|
for j in range(len(k_reciprocal_index)):
|
||||||
|
candidate = k_reciprocal_index[j]
|
||||||
|
candidate_forward_k_neigh_index = initial_rank[candidate, :int(
|
||||||
|
np.around(k1 / 2)) + 1]
|
||||||
|
candidate_backward_k_neigh_index = initial_rank[
|
||||||
|
candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1]
|
||||||
|
fi_candidate = np.where(
|
||||||
|
candidate_backward_k_neigh_index == candidate)[0]
|
||||||
|
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[
|
||||||
|
fi_candidate]
|
||||||
|
if len(
|
||||||
|
np.intersect1d(candidate_k_reciprocal_index,
|
||||||
|
k_reciprocal_index)) > 2 / 3 * len(
|
||||||
|
candidate_k_reciprocal_index):
|
||||||
|
k_reciprocal_expansion_index = np.append(
|
||||||
|
k_reciprocal_expansion_index, candidate_k_reciprocal_index)
|
||||||
|
|
||||||
|
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
|
||||||
|
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
|
||||||
|
V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
|
||||||
|
original_dist = original_dist[:query_num, ]
|
||||||
|
if k2 != 1:
|
||||||
|
V_qe = np.zeros_like(V, dtype=np.float16)
|
||||||
|
for i in range(all_num):
|
||||||
|
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
|
||||||
|
V = V_qe
|
||||||
|
del V_qe
|
||||||
|
del initial_rank
|
||||||
|
invIndex = []
|
||||||
|
for i in range(gallery_num):
|
||||||
|
invIndex.append(np.where(V[:, i] != 0)[0])
|
||||||
|
|
||||||
|
jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
|
||||||
|
for i in range(query_num):
|
||||||
|
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float16)
|
||||||
|
indNonZero = np.where(V[i, :] != 0)[0]
|
||||||
|
indImages = [invIndex[ind] for ind in indNonZero]
|
||||||
|
for j in range(len(indNonZero)):
|
||||||
|
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
|
||||||
|
V[i, indNonZero[j]], V[indImages[j], indNonZero[j]])
|
||||||
|
jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
|
||||||
|
|
||||||
|
final_dist = jaccard_dist * (1 - lambda_value
|
||||||
|
) + original_dist * lambda_value
|
||||||
|
del original_dist
|
||||||
|
del V
|
||||||
|
del jaccard_dist
|
||||||
|
final_dist = final_dist[:query_num, query_num:]
|
||||||
|
final_dist = paddle.to_tensor(final_dist)
|
||||||
|
return final_dist
|
||||||
|
|
|
@ -43,15 +43,16 @@ class TopkAcc(nn.Layer):
|
||||||
|
|
||||||
|
|
||||||
class mAP(nn.Layer):
|
class mAP(nn.Layer):
|
||||||
def __init__(self):
|
def __init__(self, descending=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.descending = descending
|
||||||
|
|
||||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
||||||
keep_mask):
|
keep_mask):
|
||||||
metric_dict = dict()
|
metric_dict = dict()
|
||||||
|
|
||||||
choosen_indices = paddle.argsort(
|
choosen_indices = paddle.argsort(
|
||||||
similarities_matrix, axis=1, descending=True)
|
similarities_matrix, axis=1, descending=self.descending)
|
||||||
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
||||||
gallery_labels_transpose = paddle.broadcast_to(
|
gallery_labels_transpose = paddle.broadcast_to(
|
||||||
gallery_labels_transpose,
|
gallery_labels_transpose,
|
||||||
|
@ -87,15 +88,16 @@ class mAP(nn.Layer):
|
||||||
|
|
||||||
|
|
||||||
class mINP(nn.Layer):
|
class mINP(nn.Layer):
|
||||||
def __init__(self):
|
def __init__(self, descending=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.descending = descending
|
||||||
|
|
||||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
||||||
keep_mask):
|
keep_mask):
|
||||||
metric_dict = dict()
|
metric_dict = dict()
|
||||||
|
|
||||||
choosen_indices = paddle.argsort(
|
choosen_indices = paddle.argsort(
|
||||||
similarities_matrix, axis=1, descending=True)
|
similarities_matrix, axis=1, descending=self.descending)
|
||||||
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
||||||
gallery_labels_transpose = paddle.broadcast_to(
|
gallery_labels_transpose = paddle.broadcast_to(
|
||||||
gallery_labels_transpose,
|
gallery_labels_transpose,
|
||||||
|
@ -130,12 +132,13 @@ class mINP(nn.Layer):
|
||||||
|
|
||||||
|
|
||||||
class Recallk(nn.Layer):
|
class Recallk(nn.Layer):
|
||||||
def __init__(self, topk=(1, 5)):
|
def __init__(self, topk=(1, 5), descending=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert isinstance(topk, (int, list, tuple))
|
assert isinstance(topk, (int, list, tuple))
|
||||||
if isinstance(topk, int):
|
if isinstance(topk, int):
|
||||||
topk = [topk]
|
topk = [topk]
|
||||||
self.topk = topk
|
self.topk = topk
|
||||||
|
self.descending = descending
|
||||||
|
|
||||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
||||||
keep_mask):
|
keep_mask):
|
||||||
|
@ -143,7 +146,7 @@ class Recallk(nn.Layer):
|
||||||
|
|
||||||
#get cmc
|
#get cmc
|
||||||
choosen_indices = paddle.argsort(
|
choosen_indices = paddle.argsort(
|
||||||
similarities_matrix, axis=1, descending=True)
|
similarities_matrix, axis=1, descending=self.descending)
|
||||||
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
||||||
gallery_labels_transpose = paddle.broadcast_to(
|
gallery_labels_transpose = paddle.broadcast_to(
|
||||||
gallery_labels_transpose,
|
gallery_labels_transpose,
|
||||||
|
@ -175,12 +178,13 @@ class Recallk(nn.Layer):
|
||||||
|
|
||||||
|
|
||||||
class Precisionk(nn.Layer):
|
class Precisionk(nn.Layer):
|
||||||
def __init__(self, topk=(1, 5)):
|
def __init__(self, topk=(1, 5), descending=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert isinstance(topk, (int, list, tuple))
|
assert isinstance(topk, (int, list, tuple))
|
||||||
if isinstance(topk, int):
|
if isinstance(topk, int):
|
||||||
topk = [topk]
|
topk = [topk]
|
||||||
self.topk = topk
|
self.topk = topk
|
||||||
|
self.descending = descending
|
||||||
|
|
||||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
|
||||||
keep_mask):
|
keep_mask):
|
||||||
|
@ -188,7 +192,7 @@ class Precisionk(nn.Layer):
|
||||||
|
|
||||||
#get cmc
|
#get cmc
|
||||||
choosen_indices = paddle.argsort(
|
choosen_indices = paddle.argsort(
|
||||||
similarities_matrix, axis=1, descending=True)
|
similarities_matrix, axis=1, descending=self.descending)
|
||||||
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
|
||||||
gallery_labels_transpose = paddle.broadcast_to(
|
gallery_labels_transpose = paddle.broadcast_to(
|
||||||
gallery_labels_transpose,
|
gallery_labels_transpose,
|
||||||
|
|
Loading…
Reference in New Issue