update code and docs
parent
2abbb70441
commit
8b639e939f
|
@ -1,9 +1,9 @@
|
||||||
Global:
|
Global:
|
||||||
infer_imgs: "./images/cls_demo/person/objects365_02035329.jpg"
|
infer_imgs: "./images/PULC/person/objects365_02035329.jpg"
|
||||||
inference_model_dir: "./models/person_cls_infer"
|
inference_model_dir: "./models/person_cls_infer"
|
||||||
batch_size: 1
|
batch_size: 1
|
||||||
use_gpu: True
|
use_gpu: True
|
||||||
enable_mkldnn: True
|
enable_mkldnn: False
|
||||||
cpu_num_threads: 10
|
cpu_num_threads: 10
|
||||||
enable_benchmark: True
|
enable_benchmark: True
|
||||||
use_fp16: False
|
use_fp16: False
|
||||||
|
@ -30,7 +30,7 @@ PostProcess:
|
||||||
main_indicator: ThreshOutput
|
main_indicator: ThreshOutput
|
||||||
ThreshOutput:
|
ThreshOutput:
|
||||||
threshold: 0.9
|
threshold: 0.9
|
||||||
label_0: invalid
|
label_0: nobody
|
||||||
label_1: valid
|
label_1: someone
|
||||||
SavePreLabel:
|
SavePreLabel:
|
||||||
save_dir: ./pre_label/
|
save_dir: ./pre_label/
|
Before Width: | Height: | Size: 275 KiB After Width: | Height: | Size: 275 KiB |
Before Width: | Height: | Size: 230 KiB After Width: | Height: | Size: 230 KiB |
|
@ -1,6 +1,6 @@
|
||||||
# PaddleClas构建有人/无人分类案例
|
# PaddleClas构建有人/无人分类案例
|
||||||
|
|
||||||
此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、KL-JS-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
|
此处提供了用户使用 PaddleClas 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络PPLCNet、SSLD预训练权重、EDA数据增强策略、SKL-UGI知识蒸馏策略、SHAS超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
|
||||||
|
|
||||||
------
|
------
|
||||||
|
|
||||||
|
@ -55,7 +55,7 @@ cd deploy
|
||||||
mkdir models
|
mkdir models
|
||||||
cd models
|
cd models
|
||||||
# 下载inference 模型并解压
|
# 下载inference 模型并解压
|
||||||
wget https://paddleclas.bj.bcebos.com/models/cls_demo/person_cls_infer.tar && tar -xf person_cls_infer.tar
|
wget https://paddleclas.bj.bcebos.com/models/PULC/person_cls_infer.tar && tar -xf person_cls_infer.tar
|
||||||
```
|
```
|
||||||
|
|
||||||
解压完毕后,`models` 文件夹下应有如下文件结构:
|
解压完毕后,`models` 文件夹下应有如下文件结构:
|
||||||
|
@ -75,23 +75,29 @@ wget https://paddleclas.bj.bcebos.com/models/cls_demo/person_cls_infer.tar && ta
|
||||||
|
|
||||||
#### 2.2.1 预测单张图像
|
#### 2.2.1 预测单张图像
|
||||||
|
|
||||||
运行下面的命令,对图像 `./images/cls_demo/person/objects365_02035329.jpg` 进行有人/无人分类。
|
返回 `deploy` 目录:
|
||||||
|
|
||||||
|
```
|
||||||
|
cd ../
|
||||||
|
```
|
||||||
|
|
||||||
|
运行下面的命令,对图像 `./images/PULC/person/objects365_02035329.jpg` 进行有人/无人分类。
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
# 使用下面的命令使用 GPU 进行预测
|
# 使用下面的命令使用 GPU 进行预测
|
||||||
python3.7 python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml
|
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794
|
||||||
# 使用下面的命令使用 CPU 进行预测
|
# 使用下面的命令使用 CPU 进行预测
|
||||||
python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.use_gpu=False
|
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
|
||||||
```
|
```
|
||||||
|
|
||||||
输出结果如下。
|
输出结果如下。
|
||||||
|
|
||||||
```
|
```
|
||||||
objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
|
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
|
||||||
```
|
```
|
||||||
|
|
||||||
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
|
|
||||||
|
|
||||||
|
**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的阈值为`0.9794`,故此处的`threshold`为`0.9794`。该阈值的确定方法可以参考[3.2节](#3.2)
|
||||||
|
|
||||||
<a name="2.2.2"></a>
|
<a name="2.2.2"></a>
|
||||||
|
|
||||||
|
@ -101,16 +107,18 @@ objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
|
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
|
||||||
python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.infer_imgs="./images/cls_demo/person/"
|
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.infer_imgs="./images/PULC/person/"
|
||||||
```
|
```
|
||||||
|
|
||||||
终端中会输出该文件夹内所有图像的分类结果,如下所示。
|
终端中会输出该文件夹内所有图像的分类结果,如下所示。
|
||||||
|
|
||||||
```
|
```
|
||||||
objects365_01780782.jpg: class id(s): [0, 1], score(s): [1.00, 0.00], label_name(s): ['nobody', 'someone']
|
objects365_01780782.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
|
||||||
objects365_02035329.jpg: class id(s): [1, 0], score(s): [1.00, 0.00], label_name(s): ['someone', 'nobody']
|
objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['someone']
|
||||||
```
|
```
|
||||||
|
|
||||||
|
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。
|
||||||
|
|
||||||
<a name="3"></a>
|
<a name="3"></a>
|
||||||
|
|
||||||
## 3.有人/无人场景训练
|
## 3.有人/无人场景训练
|
||||||
|
@ -161,7 +169,7 @@ cd ../
|
||||||
|
|
||||||
* **注意**:
|
* **注意**:
|
||||||
|
|
||||||
* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据](https://cocodataset.org/#overview)的训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。
|
* 本案例中所使用的所有数据集均为开源数据,`train`集合为[MS-COCO数据](https://cocodataset.org/#overview)的训练集的子集,`val`集合为[Object365数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`为[ImageNet数据](https://www.image-net.org/)的验证集。数据集的筛选流程可以参考[有人/无人场景数据集筛选方法]()。
|
||||||
|
|
||||||
<a name="3.2"></a>
|
<a name="3.2"></a>
|
||||||
|
|
||||||
|
@ -175,47 +183,53 @@ cd ../
|
||||||
|
|
||||||
##### 3.2.1.1 基于默认超参数训练轻量级模型
|
##### 3.2.1.1 基于默认超参数训练轻量级模型
|
||||||
|
|
||||||
在`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景中已经搜索好的超参数,可以通过如下脚本启动训练:
|
在`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||||
python3 -m paddle.distributed.launch \
|
python3 -m paddle.distributed.launch \
|
||||||
--gpus="0,1,2,3" \
|
--gpus="0,1,2,3" \
|
||||||
tools/train.py \
|
tools/train.py \
|
||||||
-c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
|
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
验证集的最佳 metric 在0.94-0.95之间(数据集较小,容易造成波动)。
|
验证集的最佳指标在0.94-0.95之间(数据集较小,容易造成波动)。
|
||||||
|
|
||||||
|
**备注:**
|
||||||
|
|
||||||
|
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr为千分之一。关于Fpr和Tpr的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)。
|
||||||
|
|
||||||
|
* 在eval时,会打印出来当前最佳的TprAtFpr指标,具体地,其会打印当前的`Fpr`、`Tpr`值,以及当前的`threshold`值,`Tpr`值反映了在当前`Fpr`值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳`Fpr`所对应的分类阈值,可用于后续模型部署落地等。
|
||||||
|
|
||||||
<a name="3.2.1.2"></a>
|
<a name="3.2.1.2"></a>
|
||||||
|
|
||||||
##### 3.2.1.2 基于默认超参数训练教师模型
|
##### 3.2.1.2 基于默认超参数训练教师模型
|
||||||
|
|
||||||
复用`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
|
复用`ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml`中的超参数,训练教师模型,训练脚本如下:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||||
python3 -m paddle.distributed.launch \
|
python3 -m paddle.distributed.launch \
|
||||||
--gpus="0,1,2,3" \
|
--gpus="0,1,2,3" \
|
||||||
tools/train.py \
|
tools/train.py \
|
||||||
-c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
|
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
|
||||||
-o Arch.name=ResNet101_vd
|
-o Arch.name=ResNet101_vd
|
||||||
```
|
```
|
||||||
|
|
||||||
验证集的最佳 metric 为0.97-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
|
验证集的最佳指标为0.96-0.98之间,当前教师模型最好的权重保存在`output/ResNet101_vd/best_model.pdparams`。
|
||||||
|
|
||||||
<a name="3.2.1.3"></a>
|
<a name="3.2.1.3"></a>
|
||||||
|
|
||||||
##### 3.2.1.3 基于默认超参数进行蒸馏训练
|
##### 3.2.1.3 基于默认超参数进行蒸馏训练
|
||||||
|
|
||||||
配置文件`ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`KL-JS-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
|
配置文件`ppcls/configs/PULC/PULC/Distillation/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||||
python3 -m paddle.distributed.launch \
|
python3 -m paddle.distributed.launch \
|
||||||
--gpus="0,1,2,3" \
|
--gpus="0,1,2,3" \
|
||||||
tools/train.py \
|
tools/train.py \
|
||||||
-c .ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml \
|
-c ./ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml \
|
||||||
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
|
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -228,14 +242,19 @@ python3 -m paddle.distributed.launch \
|
||||||
* 搜索运行脚本如下:
|
* 搜索运行脚本如下:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
python tools/search_strategy.py -c ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml
|
python tools/search_strategy.py -c ppcls/configs/StrategySearch/person.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
|
在`ppcls/configs/StrategySearch/person.yaml`中指定了具体的 GPU id 号和搜索配置。
|
||||||
|
|
||||||
* **注意**:
|
* **注意**:
|
||||||
|
|
||||||
* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 6 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。
|
* 3.1小节提供的默认配置已经经过了搜索,所以此过程不是必要的过程,如果自己的训练数据集有变化,可以尝试此过程。
|
||||||
|
|
||||||
|
* 此过程基于当前数据集在 V100 4 卡上大概需要耗时 10 小时,如果缺少机器资源,希望体验搜索过程,可以将`ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0_search.yaml`中的`train_list.txt`和`val_list.txt`分别替换为`train_list.txt.debug`和`val_list.txt.debug`。替换list只是为了加速跑通整个搜索过程,由于数据量较小,其搜素的结果没有参考性。另外,搜索空间可以根据当前的机器资源来调整,如果机器资源有限,可以尝试缩小搜索空间,如果机器资源较充足,可以尝试扩大搜索空间。
|
||||||
|
|
||||||
|
* 如果此过程搜索的得到的超参数与[3.2.1小节](#3.2.1)提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
|
||||||
|
|
||||||
* 如果此过程搜索的得到的超参数与3.2.1小节提供的超参数不一致,主要是由于训练数据较小造成的波动导致,可以忽略。
|
|
||||||
|
|
||||||
<a name="4"></a>
|
<a name="4"></a>
|
||||||
|
|
||||||
|
@ -246,11 +265,11 @@ python tools/search_strategy.py -c ppcls/configs/cls_demo/person/PPLCNet/PPLCNet
|
||||||
|
|
||||||
### 4.1 模型评估
|
### 4.1 模型评估
|
||||||
|
|
||||||
训练好模型之后,可以通过以下命令实现对模型精度的评估。
|
训练好模型之后,可以通过以下命令实现对模型指标的评估。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python3 tools/eval.py \
|
python3 tools/eval.py \
|
||||||
-c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
|
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
|
||||||
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
|
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -262,11 +281,20 @@ python3 tools/eval.py \
|
||||||
|
|
||||||
```python
|
```python
|
||||||
python3 tools/infer.py \
|
python3 tools/infer.py \
|
||||||
-c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
|
-c ./ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0.yaml \
|
||||||
-o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
|
-o Infer.infer_imgs=./dataset/person/val/objects365_01780637.jpg \
|
||||||
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
|
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
|
||||||
|
-o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
|
||||||
```
|
```
|
||||||
|
|
||||||
|
输出结果如下:
|
||||||
|
|
||||||
|
```
|
||||||
|
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person/val/objects365_01780637.jpg'}]
|
||||||
|
```
|
||||||
|
|
||||||
|
**备注:** 这里的`Infer.PostProcess.threshold`的值需要根据实际场景来确定,此处的`0.9794`是在该场景中的`val`数据集在千分之一Fpr下得到的最佳Tpr所得到的。
|
||||||
|
|
||||||
<a name="4.3"></a>
|
<a name="4.3"></a>
|
||||||
|
|
||||||
### 4.3 使用 inference 模型进行推理
|
### 4.3 使用 inference 模型进行推理
|
||||||
|
@ -280,7 +308,7 @@ python3 tools/infer.py \
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python3 tools/export_model.py \
|
python3 tools/export_model.py \
|
||||||
-c ./ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml \
|
-c ./ppcls/configs/cls_demo/PULC/PPLCNet/PPLCNet_x1_0.yaml \
|
||||||
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
|
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
|
||||||
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
|
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person
|
||||||
```
|
```
|
||||||
|
@ -292,8 +320,11 @@ python3 tools/export_model.py \
|
||||||
推理预测的脚本为:
|
推理预测的脚本为:
|
||||||
|
|
||||||
```
|
```
|
||||||
python3.7 python/predict_cls.py -c configs/cls_demo/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person"
|
python3.7 python/predict_cls.py -c configs/PULC/person/inference_person_cls.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person" -o PostProcess.ThreshOutput.threshold=0.9794
|
||||||
```
|
```
|
||||||
|
|
||||||
更多关于推理的细节,可以参考[2.2节](#2.2)。
|
**备注:**
|
||||||
|
|
||||||
|
- 此处的`PostProcess.ThreshOutput.threshold`由eval时的最佳`threshold`来确定。
|
||||||
|
- 更多关于推理的细节,可以参考[2.2节](#2.2)。
|
||||||
|
|
|
@ -40,6 +40,7 @@ def build_model(config):
|
||||||
arch = getattr(mod, model_type)(**arch_config)
|
arch = getattr(mod, model_type)(**arch_config)
|
||||||
if use_sync_bn:
|
if use_sync_bn:
|
||||||
arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
|
arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
|
||||||
|
|
||||||
if isinstance(arch, TheseusLayer):
|
if isinstance(arch, TheseusLayer):
|
||||||
prune_model(config, arch)
|
prune_model(config, arch)
|
||||||
quantize_model(config, arch)
|
quantize_model(config, arch)
|
||||||
|
|
|
@ -6,7 +6,7 @@ Global:
|
||||||
device: gpu
|
device: gpu
|
||||||
save_interval: 1
|
save_interval: 1
|
||||||
eval_during_train: True
|
eval_during_train: True
|
||||||
start_eval_epoch: 10
|
start_eval_epoch: 1
|
||||||
eval_interval: 1
|
eval_interval: 1
|
||||||
epochs: 20
|
epochs: 20
|
||||||
print_batch_step: 10
|
print_batch_step: 10
|
||||||
|
@ -33,14 +33,11 @@ Arch:
|
||||||
- Teacher:
|
- Teacher:
|
||||||
name: ResNet101_vd
|
name: ResNet101_vd
|
||||||
class_num: *class_num
|
class_num: *class_num
|
||||||
use_sync_bn: True
|
|
||||||
- Student:
|
- Student:
|
||||||
name: PPLCNet_x1_0
|
name: PPLCNet_x1_0
|
||||||
class_num: *class_num
|
class_num: *class_num
|
||||||
pretrained: True
|
pretrained: True
|
||||||
use_ssld: True
|
use_ssld: True
|
||||||
use_sync_bn: True
|
|
||||||
lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
|
|
||||||
|
|
||||||
infer_model_name: "Student"
|
infer_model_name: "Student"
|
||||||
|
|
||||||
|
@ -155,9 +152,10 @@ Infer:
|
||||||
order: ''
|
order: ''
|
||||||
- ToCHWImage:
|
- ToCHWImage:
|
||||||
PostProcess:
|
PostProcess:
|
||||||
name: Topk
|
name: ThreshOutput
|
||||||
topk: 5
|
threshold: 0.9
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
label_0: nobody
|
||||||
|
label_1: someone
|
||||||
|
|
||||||
Metric:
|
Metric:
|
||||||
Train:
|
Train:
|
|
@ -130,9 +130,10 @@ Infer:
|
||||||
order: ''
|
order: ''
|
||||||
- ToCHWImage:
|
- ToCHWImage:
|
||||||
PostProcess:
|
PostProcess:
|
||||||
name: Topk
|
name: ThreshOutput
|
||||||
topk: 5
|
threshold: 0.9
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
label_0: nobody
|
||||||
|
label_1: someone
|
||||||
|
|
||||||
Metric:
|
Metric:
|
||||||
Train:
|
Train:
|
|
@ -153,9 +153,10 @@ Infer:
|
||||||
order: ''
|
order: ''
|
||||||
- ToCHWImage:
|
- ToCHWImage:
|
||||||
PostProcess:
|
PostProcess:
|
||||||
name: Topk
|
name: ThreshOutput
|
||||||
topk: 5
|
threshold: 0.9
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
label_0: nobody
|
||||||
|
label_1: someone
|
||||||
|
|
||||||
Metric:
|
Metric:
|
||||||
Train:
|
Train:
|
|
@ -26,7 +26,6 @@ Arch:
|
||||||
pretrained: True
|
pretrained: True
|
||||||
use_ssld: True
|
use_ssld: True
|
||||||
use_sync_bn: True
|
use_sync_bn: True
|
||||||
lr_mult_list: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
|
|
||||||
|
|
||||||
# loss function config for traing/eval process
|
# loss function config for traing/eval process
|
||||||
Loss:
|
Loss:
|
||||||
|
@ -137,9 +136,10 @@ Infer:
|
||||||
order: ''
|
order: ''
|
||||||
- ToCHWImage:
|
- ToCHWImage:
|
||||||
PostProcess:
|
PostProcess:
|
||||||
name: Topk
|
name: ThreshOutput
|
||||||
topk: 5
|
threshold: 0.9
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
label_0: nobody
|
||||||
|
label_1: someone
|
||||||
|
|
||||||
Metric:
|
Metric:
|
||||||
Train:
|
Train:
|
|
@ -136,9 +136,10 @@ Infer:
|
||||||
order: ''
|
order: ''
|
||||||
- ToCHWImage:
|
- ToCHWImage:
|
||||||
PostProcess:
|
PostProcess:
|
||||||
name: Topk
|
name: ThreshOutput
|
||||||
topk: 5
|
threshold: 0.9
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
label_0: nobody
|
||||||
|
label_1: someone
|
||||||
|
|
||||||
Metric:
|
Metric:
|
||||||
Train:
|
Train:
|
|
@ -1,9 +1,9 @@
|
||||||
base_config_file: ppcls/configs/cls_demo/person/PPLCNet/PPLCNet_x1_0.yaml
|
base_config_file: ppcls/configs/PULC/person/PPLCNet/PPLCNet_x1_0_search.yaml
|
||||||
distill_config_file: ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_distillation.yaml
|
distill_config_file: ppcls/configs/PULC/person/Distillation/PPLCNet_x1_0_distillation.yaml
|
||||||
|
|
||||||
gpus: 0,1,2,3
|
gpus: 0,1,2,3
|
||||||
output_dir: output/search_person
|
output_dir: output/search_person
|
||||||
search_times: 3
|
search_times: 1
|
||||||
search_dict:
|
search_dict:
|
||||||
- search_key: lrs
|
- search_key: lrs
|
||||||
replace_config:
|
replace_config:
|
||||||
|
|
|
@ -1,169 +0,0 @@
|
||||||
# global configs
|
|
||||||
Global:
|
|
||||||
checkpoints: null
|
|
||||||
pretrained_model: null
|
|
||||||
output_dir: ./output
|
|
||||||
device: gpu
|
|
||||||
save_interval: 1
|
|
||||||
eval_during_train: True
|
|
||||||
start_eval_epoch: 10
|
|
||||||
eval_interval: 1
|
|
||||||
epochs: 20
|
|
||||||
print_batch_step: 10
|
|
||||||
use_visualdl: False
|
|
||||||
# used for static mode and model export
|
|
||||||
image_shape: [3, 224, 224]
|
|
||||||
save_inference_dir: ./inference
|
|
||||||
# training model under @to_static
|
|
||||||
to_static: False
|
|
||||||
use_dali: False
|
|
||||||
|
|
||||||
# model architecture
|
|
||||||
Arch:
|
|
||||||
name: "DistillationModel"
|
|
||||||
class_num: &class_num 2
|
|
||||||
# if not null, its lengths should be same as models
|
|
||||||
pretrained_list:
|
|
||||||
# if not null, its lengths should be same as models
|
|
||||||
freeze_params_list:
|
|
||||||
- True
|
|
||||||
- False
|
|
||||||
use_sync_bn: True
|
|
||||||
models:
|
|
||||||
- Teacher:
|
|
||||||
name: ResNet101_vd
|
|
||||||
class_num: *class_num
|
|
||||||
use_sync_bn: True
|
|
||||||
- Student:
|
|
||||||
name: PPLCNet_x1_0
|
|
||||||
class_num: *class_num
|
|
||||||
pretrained: True
|
|
||||||
use_ssld: True
|
|
||||||
use_sync_bn: True
|
|
||||||
|
|
||||||
infer_model_name: "Student"
|
|
||||||
|
|
||||||
# loss function config for traing/eval process
|
|
||||||
Loss:
|
|
||||||
Train:
|
|
||||||
- DistillationDMLLoss:
|
|
||||||
weight: 1.0
|
|
||||||
model_name_pairs:
|
|
||||||
- ["Student", "Teacher"]
|
|
||||||
Eval:
|
|
||||||
- CELoss:
|
|
||||||
weight: 1.0
|
|
||||||
|
|
||||||
|
|
||||||
Optimizer:
|
|
||||||
name: Momentum
|
|
||||||
momentum: 0.9
|
|
||||||
lr:
|
|
||||||
name: Cosine
|
|
||||||
learning_rate: 0.01
|
|
||||||
warmup_epoch: 5
|
|
||||||
regularizer:
|
|
||||||
name: 'L2'
|
|
||||||
coeff: 0.00004
|
|
||||||
|
|
||||||
|
|
||||||
# data loader for train and eval
|
|
||||||
DataLoader:
|
|
||||||
Train:
|
|
||||||
dataset:
|
|
||||||
name: ImageNetDataset
|
|
||||||
image_root: ./dataset/person/
|
|
||||||
cls_label_path: ./dataset/person/train_list_for_distill.txt
|
|
||||||
transform_ops:
|
|
||||||
- DecodeImage:
|
|
||||||
to_rgb: True
|
|
||||||
channel_first: False
|
|
||||||
- RandCropImage:
|
|
||||||
size: 224
|
|
||||||
- RandFlipImage:
|
|
||||||
flip_code: 1
|
|
||||||
- TimmAutoAugment:
|
|
||||||
prob: 0.0
|
|
||||||
config_str: rand-m9-mstd0.5-inc1
|
|
||||||
interpolation: bicubic
|
|
||||||
img_size: 224
|
|
||||||
- NormalizeImage:
|
|
||||||
scale: 1.0/255.0
|
|
||||||
mean: [0.485, 0.456, 0.406]
|
|
||||||
std: [0.229, 0.224, 0.225]
|
|
||||||
order: ''
|
|
||||||
- RandomErasing:
|
|
||||||
EPSILON: 0.0
|
|
||||||
sl: 0.02
|
|
||||||
sh: 1.0/3.0
|
|
||||||
r1: 0.3
|
|
||||||
attempt: 10
|
|
||||||
use_log_aspect: True
|
|
||||||
mode: pixel
|
|
||||||
sampler:
|
|
||||||
name: DistributedBatchSampler
|
|
||||||
batch_size: 64
|
|
||||||
drop_last: False
|
|
||||||
shuffle: True
|
|
||||||
loader:
|
|
||||||
num_workers: 16
|
|
||||||
use_shared_memory: True
|
|
||||||
|
|
||||||
Eval:
|
|
||||||
dataset:
|
|
||||||
name: ImageNetDataset
|
|
||||||
image_root: ./dataset/person/
|
|
||||||
cls_label_path: ./dataset/person/val_list.txt
|
|
||||||
transform_ops:
|
|
||||||
- DecodeImage:
|
|
||||||
to_rgb: True
|
|
||||||
channel_first: False
|
|
||||||
- ResizeImage:
|
|
||||||
resize_short: 256
|
|
||||||
- CropImage:
|
|
||||||
size: 224
|
|
||||||
- NormalizeImage:
|
|
||||||
scale: 1.0/255.0
|
|
||||||
mean: [0.485, 0.456, 0.406]
|
|
||||||
std: [0.229, 0.224, 0.225]
|
|
||||||
order: ''
|
|
||||||
sampler:
|
|
||||||
name: DistributedBatchSampler
|
|
||||||
batch_size: 64
|
|
||||||
drop_last: False
|
|
||||||
shuffle: False
|
|
||||||
loader:
|
|
||||||
num_workers: 4
|
|
||||||
use_shared_memory: True
|
|
||||||
|
|
||||||
Infer:
|
|
||||||
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
|
|
||||||
batch_size: 10
|
|
||||||
transforms:
|
|
||||||
- DecodeImage:
|
|
||||||
to_rgb: True
|
|
||||||
channel_first: False
|
|
||||||
- ResizeImage:
|
|
||||||
resize_short: 256
|
|
||||||
- CropImage:
|
|
||||||
size: 224
|
|
||||||
- NormalizeImage:
|
|
||||||
scale: 1.0/255.0
|
|
||||||
mean: [0.485, 0.456, 0.406]
|
|
||||||
std: [0.229, 0.224, 0.225]
|
|
||||||
order: ''
|
|
||||||
- ToCHWImage:
|
|
||||||
PostProcess:
|
|
||||||
name: Topk
|
|
||||||
topk: 5
|
|
||||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
|
||||||
|
|
||||||
Metric:
|
|
||||||
Train:
|
|
||||||
- DistillationTopkAcc:
|
|
||||||
model_key: "Student"
|
|
||||||
topk: [1, 2]
|
|
||||||
Eval:
|
|
||||||
- TprAtFpr:
|
|
||||||
- TopkAcc:
|
|
||||||
topk: [1, 2]
|
|
|
@ -14,9 +14,10 @@
|
||||||
import copy
|
import copy
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
from . import topk
|
from . import topk, threshoutput
|
||||||
|
|
||||||
from .topk import Topk, MultiLabelTopk
|
from .topk import Topk, MultiLabelTopk
|
||||||
|
from .threshoutput import ThreshOutput
|
||||||
|
|
||||||
|
|
||||||
def build_postprocess(config):
|
def build_postprocess(config):
|
||||||
|
|
|
@ -0,0 +1,36 @@
|
||||||
|
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
class ThreshOutput(object):
|
||||||
|
def __init__(self, threshold, label_0="0", label_1="1"):
|
||||||
|
self.threshold = threshold
|
||||||
|
self.label_0 = label_0
|
||||||
|
self.label_1 = label_1
|
||||||
|
|
||||||
|
def __call__(self, x, file_names=None):
|
||||||
|
y = []
|
||||||
|
x = F.softmax(x, axis=-1).numpy()
|
||||||
|
for idx, probs in enumerate(x):
|
||||||
|
score = probs[1]
|
||||||
|
if score < self.threshold:
|
||||||
|
result = {"class_ids": [0], "scores": [1 - score], "label_names": [self.label_0]}
|
||||||
|
else:
|
||||||
|
result = {"class_ids": [1], "scores": [score], "label_names": [self.label_1]}
|
||||||
|
if file_names is not None:
|
||||||
|
result["file_name"] = file_names[idx]
|
||||||
|
y.append(result)
|
||||||
|
return y
|
|
@ -91,7 +91,7 @@ def search_strategy():
|
||||||
res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config, model_name)
|
res = search_train(teacher_list, teacher_program, base_output_dir, "teacher", replace_config, model_name)
|
||||||
all_results["teacher"] = res
|
all_results["teacher"] = res
|
||||||
best = res.get("best")
|
best = res.get("best")
|
||||||
t_pretrained = "{}/{}_{}/{}/best_model".format(base_output_dir, "teacher", best, best)
|
t_pretrained = "{}/{}_{}_0/{}/best_model".format(base_output_dir, "teacher", best, best)
|
||||||
base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
|
base_program += ["-o", "Arch.models.0.Teacher.name={}".format(best),
|
||||||
"-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
|
"-o", "Arch.models.0.Teacher.pretrained={}".format(t_pretrained)]
|
||||||
output_dir = "{}/search_res".format(base_output_dir)
|
output_dir = "{}/search_res".format(base_output_dir)
|
||||||
|
|
Loading…
Reference in New Issue