add evonorm
parent
5d3fe63f6f
commit
93137d3236
|
@ -0,0 +1,86 @@
|
|||
import paddle
|
||||
import torch
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
|
||||
def instance_std_paddle(input, epsilon=1e-5):
|
||||
v = paddle.var(input, axis=[2,3], keepdim=True )
|
||||
v = paddle.expand_as(v, input)
|
||||
return paddle.sqrt(v+epsilon)
|
||||
|
||||
def instance_std(x, eps=1e-5):
|
||||
var = torch.var(x, dim = (2, 3), keepdim=True).expand_as(x)
|
||||
if torch.isnan(var).any():
|
||||
var = torch.zeros(var.shape)
|
||||
return torch.sqrt(var + eps)
|
||||
|
||||
def group_std_paddle(input, groups=32, epsilon=1e-5):
|
||||
#N, C, H, W = paddle.shape(input)
|
||||
N,C,H,W = input.shape
|
||||
#print(N,C,H,W)
|
||||
input = paddle.reshape(input, [N, groups, C//groups, H, W])
|
||||
v = paddle.var(input, axis=[2,3,4], keepdim=True)
|
||||
v = paddle.expand_as(v, input)
|
||||
return paddle.reshape(paddle.sqrt(v+epsilon),(N,C,H,W))
|
||||
|
||||
def group_std(x, groups = 32, eps = 1e-5):
|
||||
N, C, H, W = x.size()
|
||||
x = torch.reshape(x, (N, groups, C // groups, H, W))
|
||||
var = torch.var(x, dim = (2, 3, 4), keepdim = True).expand_as(x)
|
||||
return torch.reshape(torch.sqrt(var + eps), (N, C, H, W))
|
||||
|
||||
|
||||
|
||||
class EvoNorm(fluid.dygraph.Layer):
|
||||
def __init__(self, channels, version='B0', affine=True, non_linear=True, groups=32, epsilon=1e-5,momentum=0.9, training=True):
|
||||
super(EvoNorm, self).__init__()
|
||||
self.channels = channels
|
||||
self.affine = affine
|
||||
self.version = version
|
||||
self.non_linear = non_linear
|
||||
self.groups = groups
|
||||
self.epsilon = epsilon
|
||||
self.training = training
|
||||
self.momentum = momentum
|
||||
|
||||
if self.affine:
|
||||
|
||||
self.gamma = self.create_parameter([1, self.channels, 1, 1],
|
||||
default_initializer=fluid.initializer.Constant(value=1.0))
|
||||
self.beta = self.create_parameter([1, self.channels, 1, 1],
|
||||
default_initializer=fluid.initializer.Constant(value=0.0))
|
||||
if self.non_linear:
|
||||
self.v = self.create_parameter([1, self.channels, 1, 1],
|
||||
default_initializer=fluid.initializer.Constant(value=1.0))
|
||||
else:
|
||||
self.register_parameter('gamma', None)
|
||||
self.register_parameter('beta', None)
|
||||
self.register_buffer('v', None)
|
||||
|
||||
#self.running_var = self.create_parameter([1, self.channels, 1, 1],
|
||||
# default_initializer=fluid.initializer.Constant(value=0.0))
|
||||
#self.running_var.stop_gradient = True
|
||||
#self.register_buffer('running_var', self.create_parameter([1, self.channels, 1, 1],
|
||||
# default_initializer=fluid.initializer.Constant(value=1.0)))
|
||||
self.register_buffer('running_var', paddle.fluid.layers.ones(shape=[1,self.channels,1,1], dtype='float32'))
|
||||
|
||||
def forward(self, input):
|
||||
if self.version == 'S0':
|
||||
if self.non_linear:
|
||||
num = input * paddle.fluid.layers.sigmoid(self.v * input)
|
||||
return num / group_std_paddle(input, groups=self.groups, epsilon=self.epsilon) * self.gamma + self.beta
|
||||
else:
|
||||
return input * self.gamma + self.beta
|
||||
if self.version == 'B0':
|
||||
if self.training:
|
||||
var = paddle.var(input, axis=[0,2,3], unbiased=False, keepdim=True)
|
||||
self.running_var = self.running_var * self.momentum
|
||||
self.running_var = self.running_var + (1- self.momentum) * var
|
||||
else:
|
||||
var = self.running_var
|
||||
if self.non_linear:
|
||||
den = paddle.elementwise_max(paddle.sqrt((var+self.epsilon)), self.v * input + instance_std_paddle(input, epsilon=self.epsilon))
|
||||
return input / den * self.gamma + self.beta
|
||||
else:
|
||||
return input * self.gamma + self.beta
|
||||
|
|
@ -77,15 +77,15 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
filter_size=1,
|
||||
act=None)
|
||||
|
||||
if not shortcut:
|
||||
self.shortcut = shortcut
|
||||
|
||||
if not self.shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters * 4,
|
||||
filter_size=1,
|
||||
stride=stride)
|
||||
|
||||
self.shortcut = shortcut
|
||||
|
||||
self._num_channels_out = num_filters * 4
|
||||
|
||||
def forward(self, inputs):
|
||||
|
@ -108,18 +108,16 @@ class ResNet(fluid.dygraph.Layer):
|
|||
def __init__(self, layers=50, class_dim=1000):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [50, 101, 152]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(
|
||||
supported_layers, layers)
|
||||
|
||||
if layers == 50:
|
||||
if layers == 18:
|
||||
depth = [2, 2, 2, 2]
|
||||
elif layers == 18 or layers == 50:
|
||||
depth = [3, 4, 6, 3]
|
||||
elif layers == 101:
|
||||
depth = [3, 4, 23, 3]
|
||||
elif layers == 152:
|
||||
depth = [3, 8, 36, 3]
|
||||
else:
|
||||
raise ValueError('Input layer is not supported')
|
||||
num_channels = [64, 256, 512, 1024]
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
|
@ -191,6 +189,6 @@ def ResNet101(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
def ResNet152(class_dim=1000):
|
||||
model = ResNet(layers=152, class_dim=class_dim)
|
||||
def ResNet152(**kwargs):
|
||||
model = ResNet(layers=152, **kwargs)
|
||||
return model
|
||||
|
|
Loading…
Reference in New Issue