add resnest fast config and fix flops
parent
7505a78bde
commit
9790444e23
|
@ -0,0 +1,78 @@
|
|||
mode: 'train'
|
||||
ARCHITECTURE:
|
||||
name: 'ResNeSt50_fast_1s1x64d'
|
||||
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./output/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 300
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- AutoAugment:
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- CutmixOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -58,9 +58,9 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
|
|||
| ShuffleNetV2_x1_5 | 0.716 | 0.902 | 0.726 | | 0.580 | 3.470 |
|
||||
| ShuffleNetV2_x2_0 | 0.732 | 0.912 | 0.749 | | 1.120 | 7.320 |
|
||||
| ShuffleNetV2_swish | 0.700 | 0.892 | | | 0.290 | 2.260 |
|
||||
| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.041 | 2.600 |
|
||||
| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.147 | 5.200 |
|
||||
| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.220 | 7.300 |
|
||||
| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.082 | 2.600 |
|
||||
| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.294 | 5.200 |
|
||||
| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.440 | 7.300 |
|
||||
|
||||
|
||||
## Inference speed and storage size based on SD855
|
||||
|
|
|
@ -6,4 +6,5 @@ The ResNeSt series was proposed in 2020. The original resnet network structure h
|
|||
|
||||
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|
||||
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
|
||||
| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -|5.39 | 27.5 |
|
||||
| ResNeSt50_fast_1s1x64d | 0.8035 | 0.9528| 0.8035 | -| 8.68 | 26.3 |
|
||||
| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
|
||||
|
|
|
@ -191,6 +191,13 @@ python tools/infer/predict.py \
|
|||
- [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar)
|
||||
|
||||
|
||||
|
||||
- ResNeSt and RegNet series
|
||||
- ResNeSt系列<sup>[[24](#ref24)]</sup>([paper link](https://arxiv.org/abs/2004.08955))
|
||||
- [ResNeSt50_fast_1s1x64d)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.tar)
|
||||
- [ResNeSt50)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.tar)
|
||||
|
||||
|
||||
- Other models
|
||||
- AlexNet series<sup>[[18](#ref18)]</sup>([paper link](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
|
||||
- [AlexNet](https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar)
|
||||
|
@ -261,3 +268,5 @@ python tools/infer/predict.py \
|
|||
<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
|
||||
|
||||
<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
|
||||
|
||||
<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
|
||||
|
|
|
@ -59,9 +59,9 @@ GhosttNet是华为于2020年提出的一种全新的轻量化网络结构,通
|
|||
| ShuffleNetV2_x1_5 | 0.716 | 0.902 | 0.726 | | 0.580 | 3.470 |
|
||||
| ShuffleNetV2_x2_0 | 0.732 | 0.912 | 0.749 | | 1.120 | 7.320 |
|
||||
| ShuffleNetV2_swish | 0.700 | 0.892 | | | 0.290 | 2.260 |
|
||||
| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.041 | 2.600 |
|
||||
| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.147 | 5.200 |
|
||||
| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.220 | 7.300 |
|
||||
| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.082 | 2.600 |
|
||||
| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.294 | 5.200 |
|
||||
| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.440 | 7.300 |
|
||||
|
||||
|
||||
## 基于SD855的预测速度和存储大小
|
||||
|
|
|
@ -9,6 +9,5 @@ ResNeSt系列模型是在2020年提出的,在原有的resnet网络结构上做
|
|||
|
||||
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|
||||
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
|
||||
| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -|5.39 | 27.5 |
|
||||
|
||||
|
||||
| ResNeSt50_fast_1s1x64d | 0.8035 | 0.9528| 0.8035 | -| 8.68 | 26.3 |
|
||||
| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
|
||||
|
|
|
@ -190,6 +190,11 @@ python tools/infer/predict.py \
|
|||
- [ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)
|
||||
- [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar)
|
||||
|
||||
- ResNeSt与RegNet系列
|
||||
- ResNeSt系列<sup>[[24](#ref24)]</sup>([论文地址](https://arxiv.org/abs/2004.08955))
|
||||
- [ResNeSt50_fast_1s1x64d)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.tar)
|
||||
- [ResNeSt50)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.tar)
|
||||
|
||||
|
||||
- 其他模型
|
||||
- AlexNet系列<sup>[[18](#ref18)]</sup>([论文地址](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
|
||||
|
@ -261,3 +266,5 @@ python tools/infer/predict.py \
|
|||
<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
|
||||
|
||||
<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
|
||||
|
||||
<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
|
||||
|
|
Loading…
Reference in New Issue