change *.numpy()[0] to float(*) for correct usage of 0-D tensor
parent
e877e6a941
commit
9984080a3d
|
@ -324,8 +324,7 @@ class PyramidVisionTransformer(nn.Layer):
|
|||
self.pos_drops.append(nn.Dropout(p=drop_rate))
|
||||
|
||||
dpr = [
|
||||
x.numpy()[0]
|
||||
for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
float(x) for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
] # stochastic depth decay rule
|
||||
|
||||
cur = 0
|
||||
|
@ -551,8 +550,7 @@ class ALTGVT(PCPVT):
|
|||
self.wss = wss
|
||||
# transformer encoder
|
||||
dpr = [
|
||||
x.numpy()[0]
|
||||
for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
float(x) for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
] # stochastic depth decay rule
|
||||
cur = 0
|
||||
self.blocks = nn.LayerList()
|
||||
|
|
|
@ -130,8 +130,7 @@ def classification_eval(engine, epoch_id=0):
|
|||
for key in loss_dict:
|
||||
if key not in output_info:
|
||||
output_info[key] = AverageMeter(key, '7.5f')
|
||||
output_info[key].update(loss_dict[key].numpy()[0],
|
||||
current_samples)
|
||||
output_info[key].update(float(loss_dict[key]), current_samples)
|
||||
|
||||
# calc metric
|
||||
if engine.eval_metric_func is not None:
|
||||
|
|
|
@ -25,8 +25,8 @@ def update_metric(trainer, out, batch, batch_size):
|
|||
for key in metric_dict:
|
||||
if key not in trainer.output_info:
|
||||
trainer.output_info[key] = AverageMeter(key, '7.5f')
|
||||
trainer.output_info[key].update(metric_dict[key].numpy()[0],
|
||||
batch_size)
|
||||
trainer.output_info[key].update(
|
||||
float(metric_dict[key]), batch_size)
|
||||
|
||||
|
||||
def update_loss(trainer, loss_dict, batch_size):
|
||||
|
@ -34,7 +34,7 @@ def update_loss(trainer, loss_dict, batch_size):
|
|||
for key in loss_dict:
|
||||
if key not in trainer.output_info:
|
||||
trainer.output_info[key] = AverageMeter(key, '7.5f')
|
||||
trainer.output_info[key].update(loss_dict[key].numpy()[0], batch_size)
|
||||
trainer.output_info[key].update(float(loss_dict[key]), batch_size)
|
||||
|
||||
|
||||
def log_info(trainer, batch_size, epoch_id, iter_id):
|
||||
|
@ -53,14 +53,13 @@ def log_info(trainer, batch_size, epoch_id, iter_id):
|
|||
|
||||
ips_msg = "ips: {:.5f} samples/s".format(
|
||||
batch_size / trainer.time_info["batch_cost"].avg)
|
||||
eta_sec = ((trainer.config["Global"]["epochs"] - epoch_id + 1
|
||||
) * trainer.max_iter - iter_id
|
||||
) * trainer.time_info["batch_cost"].avg
|
||||
eta_sec = (
|
||||
(trainer.config["Global"]["epochs"] - epoch_id + 1
|
||||
) * trainer.max_iter - iter_id) * trainer.time_info["batch_cost"].avg
|
||||
eta_msg = "eta: {:s}".format(str(datetime.timedelta(seconds=int(eta_sec))))
|
||||
logger.info("[Train][Epoch {}/{}][Iter: {}/{}]{}, {}, {}, {}, {}".format(
|
||||
epoch_id, trainer.config["Global"]["epochs"], iter_id,
|
||||
trainer.max_iter, lr_msg, metric_msg, time_msg, ips_msg,
|
||||
eta_msg))
|
||||
trainer.max_iter, lr_msg, metric_msg, time_msg, ips_msg, eta_msg))
|
||||
|
||||
for i, lr in enumerate(trainer.lr_sch):
|
||||
logger.scaler(
|
||||
|
|
|
@ -113,7 +113,7 @@ class mAP(nn.Layer):
|
|||
precision_mask = paddle.multiply(equal_flag, precision)
|
||||
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
|
||||
axis=1)
|
||||
metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
|
||||
metric_dict["mAP"] = float(paddle.mean(ap))
|
||||
return metric_dict
|
||||
|
||||
|
||||
|
@ -157,7 +157,7 @@ class mINP(nn.Layer):
|
|||
hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
|
||||
all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
|
||||
mINP = paddle.mean(all_INP)
|
||||
metric_dict["mINP"] = mINP.numpy()[0]
|
||||
metric_dict["mINP"] = float(mINP)
|
||||
return metric_dict
|
||||
|
||||
|
||||
|
@ -207,7 +207,7 @@ class TprAtFpr(nn.Layer):
|
|||
result = "threshold: {}, fpr: 0.0, tpr: {:.5f}".format(
|
||||
threshold, tpr)
|
||||
msg = f"The number of negative samples is 0, please add negative samples."
|
||||
logger.warning(msg)
|
||||
logger.warning(msg)
|
||||
fpr = np.sum(
|
||||
gt_neg_score_list > threshold) / len(gt_neg_score_list)
|
||||
if fpr <= self.max_fpr and tpr > max_tpr:
|
||||
|
@ -362,7 +362,7 @@ class HammingDistance(MultiLabelMetric):
|
|||
metric_dict["HammingDistance"] = paddle.to_tensor(
|
||||
hamming_loss(target, preds))
|
||||
self.avg_meters["HammingDistance"].update(
|
||||
metric_dict["HammingDistance"].numpy()[0], output.shape[0])
|
||||
float(metric_dict["HammingDistance"]), output.shape[0])
|
||||
return metric_dict
|
||||
|
||||
|
||||
|
@ -402,7 +402,7 @@ class AccuracyScore(MultiLabelMetric):
|
|||
sum(tps) + sum(tns) + sum(fns) + sum(fps))
|
||||
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
|
||||
self.avg_meters["AccuracyScore"].update(
|
||||
metric_dict["AccuracyScore"].numpy()[0], output.shape[0])
|
||||
float(metric_dict["AccuracyScore"]), output.shape[0])
|
||||
return metric_dict
|
||||
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@ class AverageMeter(object):
|
|||
@property
|
||||
def avg_info(self):
|
||||
if isinstance(self.avg, paddle.Tensor):
|
||||
self.avg = self.avg.numpy()[0]
|
||||
self.avg = float(self.avg)
|
||||
return "{}: {:.5f}".format(self.name, self.avg)
|
||||
|
||||
@property
|
||||
|
|
Loading…
Reference in New Issue