commit
9b4b7a67b7
|
@ -0,0 +1,13 @@
|
|||
AlgoModule:
|
||||
- preprocess:
|
||||
- processor_type: data_processor
|
||||
processor_name: image_processor
|
||||
image_processors:
|
||||
- ResizeImage:
|
||||
size: [640, 640]
|
||||
interpolation: 2
|
||||
- NormalizeImage:
|
||||
scale: 0.00392157
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
- ToRGB
|
|
@ -1,20 +1,13 @@
|
|||
from abc import ABC, abstractmethod
|
||||
|
||||
from algo_mod import build_algo_mod
|
||||
from searcher import build_searcher
|
||||
from data_processor import build_data_processor
|
||||
from processor.algo_mod import predictors, searcher
|
||||
|
||||
|
||||
def build_processor(config):
|
||||
processor_type = config.get("processor_type")
|
||||
if processor_type == "algo_mod":
|
||||
return build_algo_mod(config)
|
||||
elif processor_type == "searcher":
|
||||
return build_searcher(config)
|
||||
elif processor_type == "data_processor":
|
||||
return build_data_processor(config)
|
||||
else:
|
||||
raise NotImplemented("processor_type {} not implemented.".format(processor_type))
|
||||
processor_mod = locals()[processor_type]
|
||||
processor_name = config.get("processor_name")
|
||||
return getattr(processor_mod, processor_name)
|
||||
|
||||
|
||||
class BaseProcessor(ABC):
|
||||
|
|
|
@ -1,7 +1,14 @@
|
|||
from .fake_cls import FakeClassifier
|
||||
from .. import BaseProcessor, build_processor
|
||||
|
||||
|
||||
def build_algo_mod(config):
|
||||
algo_name = config.get("algo_name")
|
||||
if algo_name == "fake_clas":
|
||||
return FakeClassifier(config)
|
||||
class AlgoMod(BaseProcessor):
|
||||
def __init__(self, config):
|
||||
self.pre_processor = build_processor(config["pre_processor"])
|
||||
self.predictor = build_processor(config["predictor"])
|
||||
self.post_processor = build_processor(config["post_processor"])
|
||||
|
||||
def process(self, input_data):
|
||||
input_data = self.pre_processor(input_data)
|
||||
input_data = self.predictor(input_data)
|
||||
input_data = self.post_processor(input_data)
|
||||
return input_data
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
from image_processor import ImageProcessor
|
|
@ -1,4 +1,4 @@
|
|||
from .. import BaseProcessor
|
||||
from processor import BaseProcessor
|
||||
|
||||
|
||||
class BBoxCropper(BaseProcessor):
|
|
@ -1,85 +1,93 @@
|
|||
from functools import partial
|
||||
import six
|
||||
import math
|
||||
import random
|
||||
import cv2
|
||||
import numpy as np
|
||||
import importlib
|
||||
from PIL import Image
|
||||
import paddle
|
||||
|
||||
from utils import logger
|
||||
from processor import BaseProcessor
|
||||
|
||||
|
||||
class PreProcesser(object):
|
||||
class ImageProcessor(BaseProcessor):
|
||||
def __init__(self, config):
|
||||
"""Image PreProcesser
|
||||
self.processors = []
|
||||
for processor_config in config.get("image_processors"):
|
||||
name = list(processor_config)[0]
|
||||
param = {} if processor_config[name] is None else processor_config[name]
|
||||
op = locals()[name](**param)
|
||||
self.processors.append(op)
|
||||
|
||||
Args:
|
||||
config (list): A list consisting of Dict object that describe an image processer operator.
|
||||
"""
|
||||
super().__init__()
|
||||
self.ops = self.create_ops(config)
|
||||
def process(self, input_data):
|
||||
image = input_data["input_image"]
|
||||
for processor in self.processors:
|
||||
if isinstance(processor, BaseProcessor):
|
||||
input_data["image"] = image
|
||||
input_data = processor.process(input_data)
|
||||
else:
|
||||
image = processor(image)
|
||||
return input_data
|
||||
|
||||
def create_ops(self, config):
|
||||
if not isinstance(config, list):
|
||||
msg = "The preprocess config should be a list consisting of Dict object."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
mod = importlib.import_module(__name__)
|
||||
ops = []
|
||||
for op_config in config:
|
||||
name = list(op_config)[0]
|
||||
param = {} if op_config[name] is None else op_config[name]
|
||||
op = getattr(mod, name)(**param)
|
||||
ops.append(op)
|
||||
return ops
|
||||
|
||||
class GetShapeInfo(BaseProcessor):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def process(self, input_data):
|
||||
input_image = input_data["input_image"]
|
||||
image = input_data["image"]
|
||||
input_data['im_shape'] = np.array(input_image.shape[:2], dtype=np.float32)
|
||||
input_data['input_shape'] = np.array(image.shape[:2], dtype=np.float32)
|
||||
input_data['scale_factor'] = np.array([image.shape[0] / input_image.shape[0],
|
||||
image.shape[1] / input_image.shape[1]], dtype=np.float32)
|
||||
|
||||
|
||||
class ToTensor(BaseProcessor):
|
||||
def __init__(self, config):
|
||||
pass
|
||||
|
||||
def process(self, input_data):
|
||||
image = input_data["image"]
|
||||
input_data["input_tensor"] = paddle.to_tensor(image)
|
||||
return input_data
|
||||
|
||||
|
||||
class ToRGB:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, img):
|
||||
img = img[:, :, ::-1]
|
||||
return img
|
||||
|
||||
|
||||
class ToCHWImage:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if img_info:
|
||||
for op in self.ops:
|
||||
img, img_info = op(img, img_info)
|
||||
return img, img_info
|
||||
img = img.transpose((2, 0, 1))
|
||||
return img
|
||||
|
||||
|
||||
class ResizeImage:
|
||||
def __init__(self,
|
||||
size=None,
|
||||
resize_short=None,
|
||||
interpolation=None,
|
||||
backend="cv2"):
|
||||
if resize_short is not None and resize_short > 0:
|
||||
self.resize_short = resize_short
|
||||
self.w = None
|
||||
self.h = None
|
||||
elif size is not None:
|
||||
self.resize_short = None
|
||||
self.w = size if type(size) is int else size[0]
|
||||
self.h = size if type(size) is int else size[1]
|
||||
else:
|
||||
for op in self.ops:
|
||||
img = op(img)
|
||||
return img
|
||||
raise Exception("invalid params for ReisizeImage for '\
|
||||
'both 'size' and 'resize_short' are None")
|
||||
|
||||
|
||||
class DecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, to_rgb=True, to_np=False, channel_first=False):
|
||||
self.to_rgb = to_rgb
|
||||
self.to_np = to_np # to numpy
|
||||
self.channel_first = channel_first # only enabled when to_np is True
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
data = np.frombuffer(img, dtype='uint8')
|
||||
img = cv2.imdecode(data, 1)
|
||||
if self.to_rgb:
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
|
||||
img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
|
||||
if img_info:
|
||||
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
|
||||
img_info["scale_factor"] = np.array([1., 1.], dtype=np.float32)
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class UnifiedResize(object):
|
||||
def __init__(self, interpolation=None, backend="cv2"):
|
||||
_cv2_interp_from_str = {
|
||||
'nearest': cv2.INTER_NEAREST,
|
||||
'bilinear': cv2.INTER_LINEAR,
|
||||
|
@ -114,38 +122,12 @@ class UnifiedResize(object):
|
|||
self.resize_func = partial(_pil_resize, resample=interpolation)
|
||||
else:
|
||||
logger.warning(
|
||||
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
|
||||
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. "
|
||||
f"Use \"cv2\" instead."
|
||||
)
|
||||
self.resize_func = cv2.resize
|
||||
|
||||
def __call__(self, src, size):
|
||||
return self.resize_func(src, size)
|
||||
|
||||
|
||||
class ResizeImage(object):
|
||||
""" resize image """
|
||||
|
||||
def __init__(self,
|
||||
size=None,
|
||||
resize_short=None,
|
||||
interpolation=None,
|
||||
backend="cv2"):
|
||||
if resize_short is not None and resize_short > 0:
|
||||
self.resize_short = resize_short
|
||||
self.w = None
|
||||
self.h = None
|
||||
elif size is not None:
|
||||
self.resize_short = None
|
||||
self.w = size if type(size) is int else size[0]
|
||||
self.h = size if type(size) is int else size[1]
|
||||
else:
|
||||
raise Exception("invalid params for ReisizeImage for '\
|
||||
'both 'size' and 'resize_short' are None")
|
||||
|
||||
self._resize_func = UnifiedResize(
|
||||
interpolation=interpolation, backend=backend)
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
def __call__(self, img):
|
||||
img_h, img_w = img.shape[:2]
|
||||
if self.resize_short is not None:
|
||||
percent = float(self.resize_short) / min(img_w, img_h)
|
||||
|
@ -154,17 +136,11 @@ class ResizeImage(object):
|
|||
else:
|
||||
w = self.w
|
||||
h = self.h
|
||||
img = self._resize_func(img, (w, h))
|
||||
if img_info:
|
||||
img_info["input_shape"] = img.shape[:2]
|
||||
img_info["scale_factor"] = np.array(
|
||||
[img.shape[0] / img_h, img.shape[1] / img_w]).astype("float32")
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
img = self.resize_func(img, (w, h))
|
||||
return img
|
||||
|
||||
|
||||
class CropImage(object):
|
||||
class CropImage:
|
||||
""" crop image """
|
||||
|
||||
def __init__(self, size):
|
||||
|
@ -173,34 +149,25 @@ class CropImage(object):
|
|||
else:
|
||||
self.size = size # (h, w)
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
def __call__(self, img):
|
||||
w, h = self.size
|
||||
img_h, img_w = img.shape[:2]
|
||||
|
||||
if img_h < h or img_w < w:
|
||||
raise Exception(
|
||||
f"The size({h}, {w}) of CropImage must be greater than size({img_h}, {img_w}) of image. Please check image original size and size of ResizeImage if used."
|
||||
f"The size({h}, {w}) of CropImage must be greater than size({img_h}, {img_w}) of image. "
|
||||
f"Please check image original size and size of ResizeImage if used."
|
||||
)
|
||||
|
||||
w_start = (img_w - w) // 2
|
||||
h_start = (img_h - h) // 2
|
||||
|
||||
w_end = w_start + w
|
||||
h_end = h_start + h
|
||||
img = img[h_start:h_end, w_start:w_end, :]
|
||||
if img_info:
|
||||
img_info["input_shape"] = img.shape[:2]
|
||||
# TODO(gaotingquan): im_shape is needed to update?
|
||||
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
return img
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
""" normalize image such as substract mean, divide std
|
||||
"""
|
||||
|
||||
class NormalizeImage:
|
||||
def __init__(self,
|
||||
scale=None,
|
||||
mean=None,
|
||||
|
@ -210,9 +177,8 @@ class NormalizeImage(object):
|
|||
channel_num=3):
|
||||
if isinstance(scale, str):
|
||||
scale = eval(scale)
|
||||
assert channel_num in [
|
||||
3, 4
|
||||
], "channel number of input image should be set to 3 or 4."
|
||||
assert channel_num in [3, 4], \
|
||||
"channel number of input image should be set to 3 or 4."
|
||||
self.channel_num = channel_num
|
||||
self.output_dtype = 'float16' if output_fp16 else 'float32'
|
||||
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
||||
|
@ -224,12 +190,8 @@ class NormalizeImage(object):
|
|||
self.mean = np.array(mean).reshape(shape).astype('float32')
|
||||
self.std = np.array(std).reshape(shape).astype('float32')
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
assert isinstance(img,
|
||||
np.ndarray), "invalid input 'img' in NormalizeImage"
|
||||
def __call__(self, img):
|
||||
assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage"
|
||||
|
||||
img = (img.astype('float32') * self.scale - self.mean) / self.std
|
||||
|
||||
|
@ -244,25 +206,4 @@ class NormalizeImage(object):
|
|||
if self.order == 'chw' else np.concatenate(
|
||||
(img, pad_zeros), axis=2))
|
||||
img = img.astype(self.output_dtype)
|
||||
if img_info:
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class ToCHWImage(object):
|
||||
""" convert hwc image to chw image
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
img = img.transpose((2, 0, 1))
|
||||
if img_info:
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
return img
|
|
@ -0,0 +1,7 @@
|
|||
from .fake_cls import FakeClassifier
|
||||
|
||||
|
||||
def build_algo_mod(config):
|
||||
algo_name = config.get("algo_name")
|
||||
if algo_name == "fake_clas":
|
||||
return FakeClassifier(config)
|
|
@ -1,4 +1,4 @@
|
|||
from .. import BaseProcessor
|
||||
from processor import BaseProcessor
|
||||
|
||||
|
||||
class FakeClassifier(BaseProcessor):
|
|
@ -1,5 +0,0 @@
|
|||
# from bbox_cropper import
|
||||
|
||||
|
||||
def build_data_processor(config):
|
||||
return
|
|
@ -1,9 +0,0 @@
|
|||
from .. import BaseProcessor
|
||||
|
||||
|
||||
class ImageReader(BaseProcessor):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def process(self, input_data):
|
||||
pass
|
Loading…
Reference in New Issue