fix export model eval (#710)
* adapt to net.eval for the framework just contains training flag setting * fix bug when export swin transformerpull/714/head
parent
dd70cb1bb0
commit
9c0f049603
|
@ -63,7 +63,7 @@ def window_partition(x, window_size):
|
|||
return windows
|
||||
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
def window_reverse(windows, window_size, H, W, C):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
|
@ -74,10 +74,9 @@ def window_reverse(windows, window_size, H, W):
|
|||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.reshape(
|
||||
[B, H // window_size, W // window_size, window_size, window_size, -1])
|
||||
x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, H, W, -1])
|
||||
[-1, H // window_size, W // window_size, window_size, window_size, C])
|
||||
x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C])
|
||||
return x
|
||||
|
||||
|
||||
|
@ -334,8 +333,8 @@ class SwinTransformerBlock(nn.Layer):
|
|||
# merge windows
|
||||
attn_windows = attn_windows.reshape(
|
||||
[-1, self.window_size, self.window_size, C])
|
||||
shifted_x = window_reverse(attn_windows, self.window_size, H,
|
||||
W) # B H' W' C
|
||||
shifted_x = window_reverse(attn_windows, self.window_size, H, W,
|
||||
C) # B H' W' C
|
||||
|
||||
# reverse cyclic shift
|
||||
if self.shift_size > 0:
|
||||
|
@ -406,7 +405,7 @@ class PatchMerging(nn.Layer):
|
|||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
x = paddle.concat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
x = x.reshape([B, -1, 4 * C]) # B H/2*W/2 4*C
|
||||
x = x.reshape([B, H * W // 4, 4 * C]) # B H/2*W/2 4*C
|
||||
|
||||
x = self.norm(x)
|
||||
x = self.reduction(x)
|
||||
|
@ -551,10 +550,8 @@ class PatchEmbed(nn.Layer):
|
|||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
"Input image size ({H}*{W}) doesn't match model ({}*{}).".format(
|
||||
H, W, self.img_size[0], self.img_size[1])
|
||||
# TODO (littletomatodonkey), uncomment the line will cause failure of jit.save
|
||||
# assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
|
||||
x = self.proj(x)
|
||||
|
||||
x = x.flatten(2).transpose([0, 2, 1]) # B Ph*Pw C
|
||||
|
|
|
@ -47,6 +47,12 @@ class Net(paddle.nn.Layer):
|
|||
self.pre_net = net(class_dim=class_dim)
|
||||
self.model = model
|
||||
|
||||
def eval(self):
|
||||
self.training = False
|
||||
for layer in self.sublayers():
|
||||
layer.training = False
|
||||
layer.eval()
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self.pre_net(inputs)
|
||||
if self.model == "GoogLeNet":
|
||||
|
|
Loading…
Reference in New Issue