add bnneck, last stride=1
parent
5615bc6cfd
commit
9c99e7cc6b
|
@ -18,13 +18,14 @@ from .circlemargin import CircleMargin
|
|||
from .fc import FC
|
||||
from .vehicle_neck import VehicleNeck
|
||||
from paddle.nn import Tanh
|
||||
from .bnneck import BNNeck
|
||||
|
||||
__all__ = ['build_gear']
|
||||
|
||||
|
||||
def build_gear(config):
|
||||
support_dict = [
|
||||
'ArcMargin', 'CosMargin', 'CircleMargin', 'FC', 'VehicleNeck', 'Tanh'
|
||||
'ArcMargin', 'CosMargin', 'CircleMargin', 'FC', 'VehicleNeck', 'Tanh', "BNNeck"
|
||||
]
|
||||
module_name = config.pop('name')
|
||||
assert module_name in support_dict, Exception(
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
class BNNeck(nn.Layer):
|
||||
def __init__(self, num_filters, trainable=False):
|
||||
super(BNNeck, self).__init__()
|
||||
self.num_filters = num_filters
|
||||
|
||||
self.bn = paddle.nn.BatchNorm(
|
||||
self.num_filters)
|
||||
if not trainable:
|
||||
self.bn.weight.trainable = False
|
||||
self.bn.bias.trainable = False
|
||||
|
||||
def forward(self, input, label=None):
|
||||
out = self.bn(input)
|
||||
return out
|
|
@ -36,6 +36,7 @@ Loss:
|
|||
Train:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
epsilon: 0.1
|
||||
- TripletLossV2:
|
||||
weight: 1.0
|
||||
margin: 0.3
|
||||
|
@ -48,8 +49,10 @@ Optimizer:
|
|||
name: Adam
|
||||
lr:
|
||||
name: Piecewise
|
||||
decay_epochs: [40, 70]
|
||||
decay_epochs: [30, 60]
|
||||
values: [0.00035, 0.000035, 0.0000035]
|
||||
warmup_epoch: 10
|
||||
warmup_start_lr: 0.0000035
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
coeff: 0.0005
|
||||
|
@ -73,17 +76,13 @@ DataLoader:
|
|||
padding: 10
|
||||
- RandCropImage:
|
||||
size: [128, 256]
|
||||
scale: [0.8022, 0.8022]
|
||||
ratio: [0.5, 0.5]
|
||||
- NormalizeImage:
|
||||
scale: 0.00392157
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- RandomErasing:
|
||||
EPSILON: 0.5
|
||||
sl: 0.02
|
||||
sh: 0.4
|
||||
r1: 0.3
|
||||
mean: [0.4914, 0.4822, 0.4465]
|
||||
sampler:
|
||||
name: DistributedRandomIdentitySampler
|
||||
batch_size: 64
|
||||
|
|
|
@ -21,11 +21,15 @@ Arch:
|
|||
infer_output_key: "features"
|
||||
infer_add_softmax: False
|
||||
Backbone:
|
||||
name: "ResNet50"
|
||||
name: "ResNet50_last_stage_stride1"
|
||||
pretrained: True
|
||||
stem_act: null
|
||||
BackboneStopLayer:
|
||||
name: "flatten"
|
||||
Neck:
|
||||
name: BNNeck
|
||||
num_filters: 2048
|
||||
trainale: false
|
||||
Head:
|
||||
name: "FC"
|
||||
embedding_size: 2048
|
||||
|
@ -76,6 +80,8 @@ DataLoader:
|
|||
padding: 10
|
||||
- RandCropImage:
|
||||
size: [128, 256]
|
||||
scale: [ 0.8022, 0.8022 ]
|
||||
ratio: [ 0.5, 0.5 ]
|
||||
- NormalizeImage:
|
||||
scale: 0.00392157
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
@ -88,9 +94,9 @@ DataLoader:
|
|||
r1: 0.3
|
||||
mean: [0.4914, 0.4822, 0.4465]
|
||||
sampler:
|
||||
name: PKSampler
|
||||
name: DistributedRandomIdentitySampler
|
||||
batch_size: 64
|
||||
sample_per_id: 4
|
||||
num_instances: 4
|
||||
drop_last: True
|
||||
shuffle: True
|
||||
loader:
|
||||
|
|
Loading…
Reference in New Issue