Init PaddleClas
parent
a7337f4ad9
commit
9f39da8859
configs
AlexNet
DarkNet
Inception
ResNet_ACNet
SqueezeNet
|
@ -0,0 +1,8 @@
|
|||
*.pyc
|
||||
*.sw*
|
||||
*log*
|
||||
/dataset
|
||||
checkpoints/
|
||||
pretrained/
|
||||
*.ipynb*
|
||||
build/
|
|
@ -0,0 +1,27 @@
|
|||
- repo: https://github.com/PaddlePaddle/mirrors-yapf.git
|
||||
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
|
||||
hooks:
|
||||
- id: yapf
|
||||
files: \.py$
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
sha: a11d9314b22d8f8c7556443875b731ef05965464
|
||||
hooks:
|
||||
- id: check-merge-conflict
|
||||
- id: check-symlinks
|
||||
- id: detect-private-key
|
||||
files: (?!.*paddle)^.*$
|
||||
- id: end-of-file-fixer
|
||||
files: \.(md|yml)$
|
||||
- id: trailing-whitespace
|
||||
files: \.(md|yml)$
|
||||
- repo: https://github.com/Lucas-C/pre-commit-hooks
|
||||
sha: v1.0.1
|
||||
hooks:
|
||||
- id: forbid-crlf
|
||||
files: \.(md|yml)$
|
||||
- id: remove-crlf
|
||||
files: \.(md|yml)$
|
||||
- id: forbid-tabs
|
||||
files: \.(md|yml)$
|
||||
- id: remove-tabs
|
||||
files: \.(md|yml)$
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "AlexNet"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.01
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'DPN107'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'DPN131'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'DPN68'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'DPN92'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'DPN98'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,71 @@
|
|||
mode: 'train'
|
||||
architecture: "DarkNet53"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 256, 256]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 256
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'DenseNet121'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'DenseNet161'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'DenseNet169'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'DenseNet201'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'DenseNet264'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W18_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W30_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W32_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W40_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W44_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W48_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'HRNet_W64_C'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,69 @@
|
|||
mode: 'train'
|
||||
architecture: "GoogLeNet"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.01
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,77 @@
|
|||
mode: 'train'
|
||||
architecture: 'InceptionV4'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 299, 299]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00010
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 299
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 16
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 320
|
||||
- CropImage:
|
||||
size: 299
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV1"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV1_x0_25"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV1_x0_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV1_x0_75"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2_x0_25"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
ratio: [1.0, 1.0]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2_x0_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
ratio: [1.0, 1.0]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2_x0_75"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2_x1_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV2_x2_0"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.045
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_large_x0_35"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_large_x0_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 1.3
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 2048
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_large_x0_75"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 1.3
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 2048
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_large_x1_0"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- ImageNetPolicy:
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_large_x1_25"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.65
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_small_x0_35"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_small_x0_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_small_x0_75"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_small_x1_0"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 2.6
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 4096
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "MobileNetV3_small_x1_25"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
ls_epsilon: 0.1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 360
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 1.3
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00002
|
||||
|
||||
TRAIN:
|
||||
batch_size: 2048
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'Res2Net101_vd_26w_4s'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'Res2Net200_vd_26w_4s'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'Res2Net50_14w_8s'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'Res2Net50_26w_4s'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'Res2Net50_vd_26w_4s'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt101_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt101_64x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000150
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt101_vd_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt101_vd_64x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt152_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt152_64x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000180
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt152_vd_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt152_vd_64x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt50_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "ResNeXt50_64x4d"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 32
|
||||
num_workers: 8
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,80 @@
|
|||
mode: 'train'
|
||||
architecture: "ResNeXt50_vd_32x4d"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNeXt50_vd_64x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet101'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet101_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet152'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet152_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,72 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet18'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet18_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet200_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,72 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet34'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet34_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet50'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,72 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet50_vc'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'ResNet50_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "ResNet_ACNet"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Piecewise'
|
||||
params:
|
||||
lr: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
gamma: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'SENet154_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,72 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNeXt101_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000015
|
||||
|
||||
TRAIN:
|
||||
batch_size: 400
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,72 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNeXt50_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: False
|
||||
ls_epsilon: -1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000120
|
||||
|
||||
TRAIN:
|
||||
batch_size: 400
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNeXt50_vd_32x4d'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNet18_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNet34_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000070
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: 'SE_ResNet50_vd'
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 200
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
use_mix: True
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000100
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.5
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_swish"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.5
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_x0_25"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.5
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
scale: [0.64, 1.0]
|
||||
ratio: [0.8, 1.2]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_x0_33"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.5
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
scale: [0.64, 1.0]
|
||||
ratio: [0.8, 1.2]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_x0_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.5
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 1024
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
scale: [0.64, 1.0]
|
||||
ratio: [0.8, 1.2]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,75 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_x1_5"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.25
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 512
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
ratio: [1.0, 1.0]
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
mode: 'train'
|
||||
architecture: "ShuffleNetV2_x2_0"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 240
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'CosineWarmup'
|
||||
params:
|
||||
lr: 0.25
|
||||
warmup_epoch: 5
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.00004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 512
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,71 @@
|
|||
mode: 'train'
|
||||
architecture: "SqueezeNet1_0"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.02
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,69 @@
|
|||
mode: 'train'
|
||||
architecture: "SqueezeNet1_1"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 120
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.02
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,69 @@
|
|||
mode: 'train'
|
||||
architecture: "VGG11"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 90
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.1
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 512
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -0,0 +1,73 @@
|
|||
mode: 'train'
|
||||
architecture: "VGG13"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 90
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.01
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0003
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,73 @@
|
|||
mode: 'train'
|
||||
architecture: "VGG16"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 90
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.01
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,49 @@
|
|||
mode: 'train'
|
||||
architecture: "VGG19"
|
||||
pretrained_model: ""
|
||||
model_save_dir: "./checkpoints/"
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 150
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.01
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.0004
|
||||
|
||||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||
data_dir: "./dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
mode: 'valid'
|
||||
architecture: ""
|
||||
pretrained_model: ""
|
||||
classes_num: 1000
|
||||
total_images: 1281167
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
|
||||
VALID:
|
||||
batch_size: 16
|
||||
num_workers: 4
|
||||
file_list: "../dataset/ILSVRC2012/val_list.txt"
|
||||
data_dir: "../dataset/ILSVRC2012/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from . import optimizer
|
||||
|
||||
from .modeling import *
|
||||
from .optimizer import *
|
||||
from .data import *
|
||||
from .utils import *
|
|
@ -0,0 +1,15 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .reader import Reader
|
|
@ -0,0 +1,94 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .autoaugment import ImageNetPolicy as RawImageNetPolicy
|
||||
from .randaugment import RandAugment as RawRandAugment
|
||||
from .cutout import Cutout
|
||||
|
||||
from .hide_and_seek import HideAndSeek
|
||||
from .random_erasing import RandomErasing
|
||||
from .grid import GridMask
|
||||
|
||||
from .operators import DecodeImage
|
||||
from .operators import ResizeImage
|
||||
from .operators import CropImage
|
||||
from .operators import RandCropImage
|
||||
from .operators import RandFlipImage
|
||||
from .operators import NormalizeImage
|
||||
from .operators import ToCHWImage
|
||||
|
||||
from .batch_operators import MixupOperator
|
||||
from .batch_operators import CutmixOperator
|
||||
from .batch_operators import FmixOperator
|
||||
|
||||
import six
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def transform(data, ops=[]):
|
||||
""" transform """
|
||||
for op in ops:
|
||||
data = op(data)
|
||||
return data
|
||||
|
||||
|
||||
class ImageNetPolicy(RawImageNetPolicy):
|
||||
""" ImageNetPolicy wrapper to auto fit different img types """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
if six.PY2:
|
||||
super(ImageNetPolicy, self).__init__(*args, **kwargs)
|
||||
else:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if six.PY2:
|
||||
img = super(ImageNetPolicy, self).__call__(img)
|
||||
else:
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
class RandAugment(RawRandAugment):
|
||||
""" RandAugment wrapper to auto fit different img types """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
if six.PY2:
|
||||
super(RandAugment, self).__init__(*args, **kwargs)
|
||||
else:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if six.PY2:
|
||||
img = super(RandAugment, self).__call__(img)
|
||||
else:
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
|
||||
return img
|
|
@ -0,0 +1,264 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
#This code is based on https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py
|
||||
|
||||
from PIL import Image, ImageEnhance, ImageOps
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
class ImageNetPolicy(object):
|
||||
""" Randomly choose one of the best 24 Sub-policies on ImageNet.
|
||||
|
||||
Example:
|
||||
>>> policy = ImageNetPolicy()
|
||||
>>> transformed = policy(image)
|
||||
|
||||
Example as a PyTorch Transform:
|
||||
>>> transform=transforms.Compose([
|
||||
>>> transforms.Resize(256),
|
||||
>>> ImageNetPolicy(),
|
||||
>>> transforms.ToTensor()])
|
||||
"""
|
||||
|
||||
def __init__(self, fillcolor=(128, 128, 128)):
|
||||
self.policies = [
|
||||
SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor),
|
||||
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
|
||||
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor),
|
||||
SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor),
|
||||
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
|
||||
SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor),
|
||||
SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor),
|
||||
SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor),
|
||||
SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor),
|
||||
SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor),
|
||||
SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor),
|
||||
SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor),
|
||||
SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor),
|
||||
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
|
||||
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
|
||||
SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor),
|
||||
SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor),
|
||||
SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor),
|
||||
SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor),
|
||||
SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor),
|
||||
SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
|
||||
SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
|
||||
SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
|
||||
SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
|
||||
SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor)
|
||||
]
|
||||
|
||||
def __call__(self, img, policy_idx=None):
|
||||
if policy_idx is None or not isinstance(policy_idx, int):
|
||||
policy_idx = random.randint(0, len(self.policies) - 1)
|
||||
else:
|
||||
policy_idx = policy_idx % len(self.policies)
|
||||
return self.policies[policy_idx](img)
|
||||
|
||||
def __repr__(self):
|
||||
return "AutoAugment ImageNet Policy"
|
||||
|
||||
|
||||
class CIFAR10Policy(object):
|
||||
""" Randomly choose one of the best 25 Sub-policies on CIFAR10.
|
||||
|
||||
Example:
|
||||
>>> policy = CIFAR10Policy()
|
||||
>>> transformed = policy(image)
|
||||
|
||||
Example as a PyTorch Transform:
|
||||
>>> transform=transforms.Compose([
|
||||
>>> transforms.Resize(256),
|
||||
>>> CIFAR10Policy(),
|
||||
>>> transforms.ToTensor()])
|
||||
"""
|
||||
|
||||
def __init__(self, fillcolor=(128, 128, 128)):
|
||||
self.policies = [
|
||||
SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor),
|
||||
SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor),
|
||||
SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor),
|
||||
SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor),
|
||||
SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor),
|
||||
SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor),
|
||||
SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor),
|
||||
SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor),
|
||||
SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor),
|
||||
SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor),
|
||||
SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor),
|
||||
SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor),
|
||||
SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor),
|
||||
SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor),
|
||||
SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor),
|
||||
SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor),
|
||||
SubPolicy(0.2, "equalize", 8, 0.8, "equalize", 4, fillcolor),
|
||||
SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor),
|
||||
SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor),
|
||||
SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor),
|
||||
SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor),
|
||||
SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor),
|
||||
SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor),
|
||||
SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor),
|
||||
SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor)
|
||||
]
|
||||
|
||||
def __call__(self, img, policy_idx=None):
|
||||
if policy_idx is None or not isinstance(policy_idx, int):
|
||||
policy_idx = random.randint(0, len(self.policies) - 1)
|
||||
else:
|
||||
policy_idx = policy_idx % len(self.policies)
|
||||
return self.policies[policy_idx](img)
|
||||
|
||||
def __repr__(self):
|
||||
return "AutoAugment CIFAR10 Policy"
|
||||
|
||||
|
||||
class SVHNPolicy(object):
|
||||
""" Randomly choose one of the best 25 Sub-policies on SVHN.
|
||||
|
||||
Example:
|
||||
>>> policy = SVHNPolicy()
|
||||
>>> transformed = policy(image)
|
||||
|
||||
Example as a PyTorch Transform:
|
||||
>>> transform=transforms.Compose([
|
||||
>>> transforms.Resize(256),
|
||||
>>> SVHNPolicy(),
|
||||
>>> transforms.ToTensor()])
|
||||
"""
|
||||
|
||||
def __init__(self, fillcolor=(128, 128, 128)):
|
||||
self.policies = [
|
||||
SubPolicy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor),
|
||||
SubPolicy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor),
|
||||
SubPolicy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor),
|
||||
SubPolicy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor),
|
||||
SubPolicy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor),
|
||||
SubPolicy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor),
|
||||
SubPolicy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor),
|
||||
SubPolicy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor),
|
||||
SubPolicy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor),
|
||||
SubPolicy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor),
|
||||
SubPolicy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor),
|
||||
SubPolicy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor),
|
||||
SubPolicy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor),
|
||||
SubPolicy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor),
|
||||
SubPolicy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor),
|
||||
SubPolicy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor),
|
||||
SubPolicy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor),
|
||||
SubPolicy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor),
|
||||
SubPolicy(
|
||||
0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor), SubPolicy(
|
||||
0.1, "shearX", 6, 0.6, "invert", 5, fillcolor), SubPolicy(
|
||||
0.7, "solarize", 2, 0.6, "translateY", 7,
|
||||
fillcolor), SubPolicy(0.8, "shearY", 4, 0.8, "invert",
|
||||
8, fillcolor), SubPolicy(
|
||||
0.7, "shearX", 9, 0.8,
|
||||
"translateY", 3,
|
||||
fillcolor), SubPolicy(
|
||||
0.8, "shearY", 5, 0.7,
|
||||
"autocontrast", 3,
|
||||
fillcolor),
|
||||
SubPolicy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor)
|
||||
]
|
||||
|
||||
def __call__(self, img, policy_idx=None):
|
||||
if policy_idx is None or not isinstance(policy_idx, int):
|
||||
policy_idx = random.randint(0, len(self.policies) - 1)
|
||||
else:
|
||||
policy_idx = policy_idx % len(self.policies)
|
||||
return self.policies[policy_idx](img)
|
||||
|
||||
def __repr__(self):
|
||||
return "AutoAugment SVHN Policy"
|
||||
|
||||
|
||||
class SubPolicy(object):
|
||||
def __init__(self,
|
||||
p1,
|
||||
operation1,
|
||||
magnitude_idx1,
|
||||
p2,
|
||||
operation2,
|
||||
magnitude_idx2,
|
||||
fillcolor=(128, 128, 128)):
|
||||
ranges = {
|
||||
"shearX": np.linspace(0, 0.3, 10),
|
||||
"shearY": np.linspace(0, 0.3, 10),
|
||||
"translateX": np.linspace(0, 150 / 331, 10),
|
||||
"translateY": np.linspace(0, 150 / 331, 10),
|
||||
"rotate": np.linspace(0, 30, 10),
|
||||
"color": np.linspace(0.0, 0.9, 10),
|
||||
"posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
|
||||
"solarize": np.linspace(256, 0, 10),
|
||||
"contrast": np.linspace(0.0, 0.9, 10),
|
||||
"sharpness": np.linspace(0.0, 0.9, 10),
|
||||
"brightness": np.linspace(0.0, 0.9, 10),
|
||||
"autocontrast": [0] * 10,
|
||||
"equalize": [0] * 10,
|
||||
"invert": [0] * 10
|
||||
}
|
||||
|
||||
# from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
|
||||
def rotate_with_fill(img, magnitude):
|
||||
rot = img.convert("RGBA").rotate(magnitude)
|
||||
return Image.composite(rot,
|
||||
Image.new("RGBA", rot.size, (128, ) * 4),
|
||||
rot).convert(img.mode)
|
||||
|
||||
func = {
|
||||
"shearX": lambda img, magnitude: img.transform(
|
||||
img.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0),
|
||||
Image.BICUBIC, fillcolor=fillcolor),
|
||||
"shearY": lambda img, magnitude: img.transform(
|
||||
img.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0),
|
||||
Image.BICUBIC, fillcolor=fillcolor),
|
||||
"translateX": lambda img, magnitude: img.transform(
|
||||
img.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0),
|
||||
fillcolor=fillcolor),
|
||||
"translateY": lambda img, magnitude: img.transform(
|
||||
img.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])),
|
||||
fillcolor=fillcolor),
|
||||
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
|
||||
# "rotate": lambda img, magnitude: img.rotate(magnitude * random.choice([-1, 1])),
|
||||
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(1 + magnitude * random.choice([-1, 1])),
|
||||
"posterize": lambda img, magnitude: ImageOps.posterize(img, magnitude),
|
||||
"solarize": lambda img, magnitude: ImageOps.solarize(img, magnitude),
|
||||
"contrast": lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
|
||||
1 + magnitude * random.choice([-1, 1])),
|
||||
"sharpness": lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
|
||||
1 + magnitude * random.choice([-1, 1])),
|
||||
"brightness": lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
|
||||
1 + magnitude * random.choice([-1, 1])),
|
||||
"autocontrast": lambda img, magnitude: ImageOps.autocontrast(img),
|
||||
"equalize": lambda img, magnitude: ImageOps.equalize(img),
|
||||
"invert": lambda img, magnitude: ImageOps.invert(img)
|
||||
}
|
||||
|
||||
self.p1 = p1
|
||||
self.operation1 = func[operation1]
|
||||
self.magnitude1 = ranges[operation1][magnitude_idx1]
|
||||
self.p2 = p2
|
||||
self.operation2 = func[operation2]
|
||||
self.magnitude2 = ranges[operation2][magnitude_idx2]
|
||||
|
||||
def __call__(self, img):
|
||||
if random.random() < self.p1:
|
||||
img = self.operation1(img, self.magnitude1)
|
||||
if random.random() < self.p2:
|
||||
img = self.operation2(img, self.magnitude2)
|
||||
return img
|
|
@ -0,0 +1,115 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .fmix import sample_mask
|
||||
|
||||
|
||||
class BatchOperator(object):
|
||||
""" BatchOperator """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def _unpack(self, batch):
|
||||
""" _unpack """
|
||||
assert isinstance(batch, list), \
|
||||
'batch should be a list filled with tuples (img, label)'
|
||||
bs = len(batch)
|
||||
assert bs > 0, 'size of the batch data should > 0'
|
||||
imgs, labels = list(zip(*batch))
|
||||
return np.array(imgs), np.array(labels), bs
|
||||
|
||||
def __call__(self, batch):
|
||||
return batch
|
||||
|
||||
|
||||
class MixupOperator(BatchOperator):
|
||||
""" Mixup operator """
|
||||
|
||||
def __init__(self, alpha=0.2):
|
||||
assert alpha > 0., \
|
||||
'parameter alpha[%f] should > 0.0' % (alpha)
|
||||
self._alpha = alpha
|
||||
|
||||
def __call__(self, batch):
|
||||
imgs, labels, bs = self._unpack(batch)
|
||||
idx = np.random.permutation(bs)
|
||||
lam = np.random.beta(self._alpha, self._alpha)
|
||||
imgs = lam * imgs + (1 - lam) * imgs[idx]
|
||||
return list(zip(imgs, labels, labels[idx], [lam] * bs))
|
||||
|
||||
|
||||
class CutmixOperator(BatchOperator):
|
||||
""" Cutmix operator """
|
||||
|
||||
def __init__(self, alpha=0.2):
|
||||
assert alpha > 0., \
|
||||
'parameter alpha[%f] should > 0.0' % (alpha)
|
||||
self._alpha = alpha
|
||||
|
||||
def _rand_bbox(self, size, lam):
|
||||
""" _rand_bbox """
|
||||
w = size[2]
|
||||
h = size[3]
|
||||
cut_rat = np.sqrt(1. - lam)
|
||||
cut_w = np.int(w * cut_rat)
|
||||
cut_h = np.int(h * cut_rat)
|
||||
|
||||
# uniform
|
||||
cx = np.random.randint(w)
|
||||
cy = np.random.randint(h)
|
||||
|
||||
bbx1 = np.clip(cx - cut_w // 2, 0, w)
|
||||
bby1 = np.clip(cy - cut_h // 2, 0, h)
|
||||
bbx2 = np.clip(cx + cut_w // 2, 0, w)
|
||||
bby2 = np.clip(cy + cut_h // 2, 0, h)
|
||||
|
||||
return bbx1, bby1, bbx2, bby2
|
||||
|
||||
def __call__(self, batch):
|
||||
imgs, labels, bs = self._unpack(batch)
|
||||
idx = np.random.permutation(bs)
|
||||
lam = np.random.beta(self._alpha, self._alpha)
|
||||
|
||||
bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam)
|
||||
imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2]
|
||||
lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) /
|
||||
(imgs.shape[-2] * imgs.shape[-1]))
|
||||
return list(zip(imgs, labels, labels[idx], [lam] * bs))
|
||||
|
||||
|
||||
class FmixOperator(BatchOperator):
|
||||
""" Fmix operator """
|
||||
|
||||
def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False):
|
||||
self._alpha = alpha
|
||||
self._decay_power = decay_power
|
||||
self._max_soft = max_soft
|
||||
self._reformulate = reformulate
|
||||
|
||||
def __call__(self, batch):
|
||||
imgs, labels, bs = self._unpack(batch)
|
||||
idx = np.random.permutation(bs)
|
||||
size = (imgs.shape[2], imgs.shape[3])
|
||||
lam, mask = sample_mask(self._alpha, self._decay_power, \
|
||||
size, self._max_soft, self._reformulate)
|
||||
imgs = mask * imgs + (1 - mask) * imgs[idx]
|
||||
return list(zip(imgs, labels, labels[idx], [lam] * bs))
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
class Cutout(object):
|
||||
def __init__(self, n_holes=1, length=112):
|
||||
self.n_holes = n_holes
|
||||
self.length = length
|
||||
|
||||
def __call__(self, img):
|
||||
""" cutout_image """
|
||||
h, w = img.shape[:2]
|
||||
mask = np.ones((h, w), np.float32)
|
||||
|
||||
for n in range(self.n_holes):
|
||||
y = np.random.randint(h)
|
||||
x = np.random.randint(w)
|
||||
|
||||
y1 = np.clip(y - self.length // 2, 0, h)
|
||||
y2 = np.clip(y + self.length // 2, 0, h)
|
||||
x1 = np.clip(x - self.length // 2, 0, w)
|
||||
x2 = np.clip(x + self.length // 2, 0, w)
|
||||
|
||||
img[y1:y2, x1:x2] = 0
|
||||
return img
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue