mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
fix optimizer
This commit is contained in:
parent
b17fbac3dd
commit
a43aac3250
@ -16,18 +16,124 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.fluid.optimizer as pfopt
|
||||
import paddle.fluid.regularizer as pfreg
|
||||
import sys
|
||||
|
||||
import paddle.fluid as fluid
|
||||
|
||||
__all__ = ['OptimizerBuilder']
|
||||
|
||||
|
||||
class L1Decay(object):
|
||||
"""
|
||||
L1 Weight Decay Regularization, which encourages the weights to be sparse.
|
||||
|
||||
Args:
|
||||
factor(float): regularization coeff. Default:0.0.
|
||||
"""
|
||||
|
||||
def __init__(self, factor=0.0):
|
||||
super(L1Decay, self).__init__()
|
||||
self.regularization_coeff = factor
|
||||
|
||||
def __call__(self):
|
||||
reg = fluid.regularizer.L1Decay(
|
||||
regularization_coeff=self.regularization_coeff)
|
||||
return reg
|
||||
|
||||
|
||||
class L2Decay(object):
|
||||
"""
|
||||
L2 Weight Decay Regularization, which encourages the weights to be sparse.
|
||||
|
||||
Args:
|
||||
factor(float): regularization coeff. Default:0.0.
|
||||
"""
|
||||
|
||||
def __init__(self, factor=0.0):
|
||||
super(L2Decay, self).__init__()
|
||||
self.regularization_coeff = factor
|
||||
|
||||
def __call__(self):
|
||||
reg = fluid.regularizer.L2Decay(
|
||||
regularization_coeff=self.regularization_coeff)
|
||||
return reg
|
||||
|
||||
|
||||
class Momentum(object):
|
||||
"""
|
||||
Simple Momentum optimizer with velocity state.
|
||||
|
||||
Args:
|
||||
learning_rate (float|Variable) - The learning rate used to update parameters.
|
||||
Can be a float value or a Variable with one float value as data element.
|
||||
momentum (float) - Momentum factor.
|
||||
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
learning_rate,
|
||||
momentum,
|
||||
parameter_list=None,
|
||||
regularization=None,
|
||||
**args):
|
||||
super(Momentum, self).__init__()
|
||||
self.learning_rate = learning_rate
|
||||
self.momentum = momentum
|
||||
self.parameter_list = parameter_list
|
||||
self.regularization = regularization
|
||||
|
||||
def __call__(self):
|
||||
opt = fluid.optimizer.Momentum(
|
||||
learning_rate=self.learning_rate,
|
||||
momentum=self.momentum,
|
||||
parameter_list=self.parameter_list,
|
||||
regularization=self.regularization)
|
||||
return opt
|
||||
|
||||
|
||||
class RMSProp(object):
|
||||
"""
|
||||
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
|
||||
|
||||
Args:
|
||||
learning_rate (float|Variable) - The learning rate used to update parameters.
|
||||
Can be a float value or a Variable with one float value as data element.
|
||||
momentum (float) - Momentum factor.
|
||||
rho (float) - rho value in equation.
|
||||
epsilon (float) - avoid division by zero, default is 1e-6.
|
||||
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
learning_rate,
|
||||
momentum,
|
||||
rho=0.95,
|
||||
epsilon=1e-6,
|
||||
parameter_list=None,
|
||||
regularization=None,
|
||||
**args):
|
||||
super(RMSProp, self).__init__()
|
||||
self.learning_rate = learning_rate
|
||||
self.momentum = momentum
|
||||
self.rho = rho
|
||||
self.epsilon = epsilon
|
||||
self.parameter_list = parameter_list
|
||||
self.regularization = regularization
|
||||
|
||||
def __call__(self):
|
||||
opt = fluid.optimizer.RMSProp(
|
||||
learning_rate=self.learning_rate,
|
||||
momentum=self.momentum,
|
||||
rho=self.rho,
|
||||
epsilon=self.epsilon,
|
||||
parameter_list=self.parameter_list,
|
||||
regularization=self.regularization)
|
||||
return opt
|
||||
|
||||
|
||||
class OptimizerBuilder(object):
|
||||
"""
|
||||
Build optimizer with fluid api in fluid.layers.optimizer,
|
||||
such as fluid.layers.optimizer.Momentum()
|
||||
https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/optimizer_cn.html
|
||||
https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/regularizer_cn.html
|
||||
Build optimizer
|
||||
|
||||
Args:
|
||||
function(str): optimizer name of learning rate
|
||||
@ -43,13 +149,15 @@ class OptimizerBuilder(object):
|
||||
self.params = params
|
||||
# create regularizer
|
||||
if regularizer is not None:
|
||||
mod = sys.modules[__name__]
|
||||
reg_func = regularizer['function'] + 'Decay'
|
||||
reg_factor = regularizer['factor']
|
||||
reg = getattr(pfreg, reg_func)(reg_factor)
|
||||
del regularizer['function']
|
||||
reg = getattr(mod, reg_func)(**regularizer)()
|
||||
self.params['regularization'] = reg
|
||||
|
||||
def __call__(self, learning_rate, parameter_list):
|
||||
opt = getattr(pfopt, self.function)
|
||||
mod = sys.modules[__name__]
|
||||
opt = getattr(mod, self.function)
|
||||
return opt(learning_rate=learning_rate,
|
||||
parameter_list=parameter_list,
|
||||
**self.params)
|
||||
**self.params)()
|
||||
|
@ -276,7 +276,6 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
|
||||
("lr", AverageMeter(
|
||||
'lr', 'f', need_avg=False)),
|
||||
("batch_time", AverageMeter('elapse', '.3f')),
|
||||
('reader_time', AverageMeter('reader', '.3f')),
|
||||
]
|
||||
if not use_mix:
|
||||
topk_name = 'top{}'.format(config.topk)
|
||||
@ -287,7 +286,6 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
|
||||
|
||||
tic = time.time()
|
||||
for idx, batch in enumerate(dataloader()):
|
||||
metric_list['reader_time'].update(time.time() - tic)
|
||||
batch_size = len(batch[0])
|
||||
feeds = create_feeds(batch, use_mix)
|
||||
fetchs = create_fetchs(feeds, net, config, mode)
|
||||
|
Loading…
x
Reference in New Issue
Block a user