diff --git a/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml b/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml
new file mode 100644
index 000000000..99cb1137e
--- /dev/null
+++ b/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml
@@ -0,0 +1,78 @@
+mode: 'train'
+ARCHITECTURE:
+ name: 'ResNeSt50_fast_1s1x64d'
+
+pretrained_model: ""
+model_save_dir: "./output/"
+classes_num: 1000
+total_images: 1281167
+save_interval: 1
+validate: True
+valid_interval: 1
+epochs: 300
+topk: 5
+image_shape: [3, 224, 224]
+
+use_mix: True
+ls_epsilon: 0.1
+
+LEARNING_RATE:
+ function: 'CosineWarmup'
+ params:
+ lr: 0.1
+
+OPTIMIZER:
+ function: 'Momentum'
+ params:
+ momentum: 0.9
+ regularizer:
+ function: 'L2'
+ factor: 0.000070
+
+TRAIN:
+ batch_size: 256
+ num_workers: 4
+ file_list: "./dataset/ILSVRC2012/train_list.txt"
+ data_dir: "./dataset/ILSVRC2012/"
+ shuffle_seed: 0
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ to_np: False
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - RandFlipImage:
+ flip_code: 1
+ - AutoAugment:
+ - NormalizeImage:
+ scale: 1./255.
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ mix:
+ - CutmixOperator:
+ alpha: 0.2
+
+VALID:
+ batch_size: 64
+ num_workers: 4
+ file_list: "./dataset/ILSVRC2012/val_list.txt"
+ data_dir: "./dataset/ILSVRC2012/"
+ shuffle_seed: 0
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ to_np: False
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
diff --git a/docs/en/models/Mobile_en.md b/docs/en/models/Mobile_en.md
index 739f653d7..c3ebd8f73 100644
--- a/docs/en/models/Mobile_en.md
+++ b/docs/en/models/Mobile_en.md
@@ -58,9 +58,9 @@ Currently there are 32 pretrained models of the mobile series open source by Pad
| ShuffleNetV2_x1_5 | 0.716 | 0.902 | 0.726 | | 0.580 | 3.470 |
| ShuffleNetV2_x2_0 | 0.732 | 0.912 | 0.749 | | 1.120 | 7.320 |
| ShuffleNetV2_swish | 0.700 | 0.892 | | | 0.290 | 2.260 |
-| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.041 | 2.600 |
-| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.147 | 5.200 |
-| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.220 | 7.300 |
+| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.082 | 2.600 |
+| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.294 | 5.200 |
+| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.440 | 7.300 |
## Inference speed and storage size based on SD855
diff --git a/docs/en/models/ResNeSt_RegNet_en.md b/docs/en/models/ResNeSt_RegNet_en.md
index 3952b1155..ad1dad176 100644
--- a/docs/en/models/ResNeSt_RegNet_en.md
+++ b/docs/en/models/ResNeSt_RegNet_en.md
@@ -6,4 +6,5 @@ The ResNeSt series was proposed in 2020. The original resnet network structure h
| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Parameters
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
-| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -|5.39 | 27.5 |
+| ResNeSt50_fast_1s1x64d | 0.8035 | 0.9528| 0.8035 | -| 8.68 | 26.3 |
+| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
diff --git a/docs/en/models/models_intro_en.md b/docs/en/models/models_intro_en.md
index 5fa4358fe..72cecd805 100644
--- a/docs/en/models/models_intro_en.md
+++ b/docs/en/models/models_intro_en.md
@@ -191,6 +191,13 @@ python tools/infer/predict.py \
- [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar)
+
+- ResNeSt and RegNet series
+ - ResNeSt series[[24](#ref24)]([paper link](https://arxiv.org/abs/2004.08955))
+ - [ResNeSt50_fast_1s1x64d](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams)
+ - [ResNeSt50](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)
+
+
- Other models
- AlexNet series[[18](#ref18)]([paper link](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
- [AlexNet](https://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar)
@@ -261,3 +268,5 @@ python tools/infer/predict.py \
[22] Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
[23] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
+
+[24] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.
diff --git a/docs/zh_CN/models/Mobile.md b/docs/zh_CN/models/Mobile.md
index f8c39952c..386b3848e 100644
--- a/docs/zh_CN/models/Mobile.md
+++ b/docs/zh_CN/models/Mobile.md
@@ -59,9 +59,9 @@ GhosttNet是华为于2020年提出的一种全新的轻量化网络结构,通
| ShuffleNetV2_x1_5 | 0.716 | 0.902 | 0.726 | | 0.580 | 3.470 |
| ShuffleNetV2_x2_0 | 0.732 | 0.912 | 0.749 | | 1.120 | 7.320 |
| ShuffleNetV2_swish | 0.700 | 0.892 | | | 0.290 | 2.260 |
-| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.041 | 2.600 |
-| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.147 | 5.200 |
-| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.220 | 7.300 |
+| GhostNet_x0_5 | 0.668 | 0.869 | 0.662 | 0.866 | 0.082 | 2.600 |
+| GhostNet_x1_0 | 0.740 | 0.916 | 0.739 | 0.914 | 0.294 | 5.200 |
+| GhostNet_x1_3 | 0.757 | 0.925 | 0.757 | 0.927 | 0.440 | 7.300 |
## 基于SD855的预测速度和存储大小
diff --git a/docs/zh_CN/models/ResNeSt_RegNet.md b/docs/zh_CN/models/ResNeSt_RegNet.md
index 2b12d7394..10b1e5896 100644
--- a/docs/zh_CN/models/ResNeSt_RegNet.md
+++ b/docs/zh_CN/models/ResNeSt_RegNet.md
@@ -9,6 +9,5 @@ ResNeSt系列模型是在2020年提出的,在原有的resnet网络结构上做
| Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Parameters
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
-| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -|5.39 | 27.5 |
-
-
+| ResNeSt50_fast_1s1x64d | 0.8035 | 0.9528| 0.8035 | -| 8.68 | 26.3 |
+| ResNeSt50 | 0.8102 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
diff --git a/docs/zh_CN/models/models_intro.md b/docs/zh_CN/models/models_intro.md
index 6064a45b6..7faa7c0f0 100644
--- a/docs/zh_CN/models/models_intro.md
+++ b/docs/zh_CN/models/models_intro.md
@@ -190,6 +190,11 @@ python tools/infer/predict.py \
- [ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)
- [Fix_ResNeXt101_32x48d_wsl](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar)
+- ResNeSt与RegNet系列
+ - ResNeSt系列[[24](#ref24)]([论文地址](https://arxiv.org/abs/2004.08955))
+ - [ResNeSt50_fast_1s1x64d)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams)
+ - [ResNeSt50)(https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)
+
- 其他模型
- AlexNet系列[[18](#ref18)]([论文地址](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf))
@@ -261,3 +266,5 @@ python tools/infer/predict.py \
[22] Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.
[23] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
+
+[24] Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.