update_text_image_orientation_doc

pull/2065/head
lvjian0706 2022-06-15 10:45:40 +08:00
parent 207233c1bd
commit a9cf238656
1 changed files with 8 additions and 8 deletions

View File

@ -40,15 +40,15 @@
下表列出了判断含文字图像方向分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第五行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 超参数搜索策略训练得到的模型的相关指标。
| 模型 | 精度(% | 延时ms | 存储M | 策略 |
| ----------------------- | --------- | ---------- | --------- | ------------------------------------- |
| SwinTranformer_tiny | 99.12 | 89.65 | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 83.61 | 2.95 | 17 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.85 | 2.16 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 98.02 | 2.16 | 6.5 | 使用SSLD预训练模型 |
| **PPLCNet_x1_0** | **99.06** | **2.16** | **6.5** | 使用SSLD预训练模型+SHAS超参数搜索策略 |
| 模型 | 精度(% | 延时ms | 存储M | 策略 |
| ----------------------- | --------- | ---------- | --------- | -------------------------- |
| SwinTranformer_tiny | 99.12 | 89.65 | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 83.61 | 2.95 | 17 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.85 | 2.16 | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 99.02 | 2.16 | 6.5 | 使用SSLD预训练模型 |
| **PPLCNet_x1_0** | **99.06** | **2.16** | **6.5** | 使用SSLD预训练模型+EDA策略 |
从表中可以看出backbone 为 SwinTranformer_tiny 时精度比较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度提升明显,但精度有了大幅下降。将 backbone 替换为 PPLCNet_x1_0 时,速度略为提升,同时精度较 MobileNetV3_small_x0_35 高了 14.24 个百分点。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升 0.17 个百分点进一步地当使用SHAS超参数搜索策略搜索最优超参数后精度可以再提升 1.04 个百分点。此时PPLCNet_x1_0 与 SwinTranformer_tiny 的精度差别不大,但是速度明显变快。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
从表中可以看出backbone 为 SwinTranformer_tiny 时精度比较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度提升明显,但精度有了大幅下降。将 backbone 替换为 PPLCNet_x1_0 时,速度略为提升,同时精度较 MobileNetV3_small_x0_35 高了 14.24 个百分点。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升 1.17 个百分点,进一步地使用 EDA 策略后,精度可以再提升 0.04 个百分点。此时PPLCNet_x1_0 与 SwinTranformer_tiny 的精度差别不大,但是速度明显变快。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**