add flexible configuration for disable det model(C++)
parent
6cf954e1c7
commit
b31d67ea32
|
@ -37,17 +37,14 @@
|
|||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
DEFINE_string(config,
|
||||
"", "Path of yaml file");
|
||||
DEFINE_string(c,
|
||||
"", "Path of yaml file");
|
||||
DEFINE_string(config, "", "Path of yaml file");
|
||||
DEFINE_string(c, "", "Path of yaml file");
|
||||
|
||||
void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
|
||||
const std::vector <std::string> &all_img_paths,
|
||||
void DetPredictImage(const std::vector<cv::Mat> &batch_imgs,
|
||||
const std::vector<std::string> &all_img_paths,
|
||||
const int batch_size, Detection::ObjectDetector *det,
|
||||
std::vector <Detection::ObjectResult> &im_result,
|
||||
std::vector<int> &im_bbox_num, std::vector<double> &det_t,
|
||||
const bool visual_det = false,
|
||||
std::vector<Detection::ObjectResult> &im_result,
|
||||
std::vector<double> &det_t, const bool visual_det = false,
|
||||
const bool run_benchmark = false,
|
||||
const std::string &output_dir = "output") {
|
||||
int steps = ceil(float(all_img_paths.size()) / batch_size);
|
||||
|
@ -65,7 +62,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
|
|||
// }
|
||||
|
||||
// Store all detected result
|
||||
std::vector <Detection::ObjectResult> result;
|
||||
std::vector<Detection::ObjectResult> result;
|
||||
std::vector<int> bbox_num;
|
||||
std::vector<double> det_times;
|
||||
bool is_rbox = false;
|
||||
|
@ -104,7 +101,7 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
|
|||
}
|
||||
}
|
||||
}
|
||||
im_bbox_num.push_back(detect_num);
|
||||
// im_bbox_num.push_back(detect_num);
|
||||
item_start_idx = item_start_idx + bbox_num[i];
|
||||
|
||||
// Visualization result
|
||||
|
@ -136,16 +133,17 @@ void DetPredictImage(const std::vector <cv::Mat> &batch_imgs,
|
|||
}
|
||||
|
||||
void PrintResult(std::string &img_path,
|
||||
std::vector <Detection::ObjectResult> &det_result,
|
||||
std::vector<int> &indeices, VectorSearch &vector_search,
|
||||
std::vector<Detection::ObjectResult> &det_result,
|
||||
std::vector<int> &indeices, VectorSearch *vector_search_ptr,
|
||||
SearchResult &search_result) {
|
||||
printf("%s:\n", img_path.c_str());
|
||||
for (int i = 0; i < indeices.size(); ++i) {
|
||||
int t = indeices[i];
|
||||
printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
|
||||
printf(
|
||||
"\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i,
|
||||
det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2],
|
||||
det_result[t].rect[3], det_result[t].confidence,
|
||||
vector_search.GetLabel(search_result.I[search_result.return_k * t])
|
||||
vector_search_ptr->GetLabel(search_result.I[search_result.return_k * t])
|
||||
.c_str());
|
||||
}
|
||||
}
|
||||
|
@ -168,10 +166,21 @@ int main(int argc, char **argv) {
|
|||
YamlConfig config(yaml_path);
|
||||
config.PrintConfigInfo();
|
||||
|
||||
// initialize detector, rec_Model, vector_search
|
||||
Feature::FeatureExtracter feature_extracter(config.config_file);
|
||||
Detection::ObjectDetector detector(config.config_file);
|
||||
VectorSearch searcher(config.config_file);
|
||||
// initialize detector
|
||||
Detection::ObjectDetector *detector_ptr = nullptr;
|
||||
if (config.config_file["Global"]["det_inference_model_dir"].Type() !=
|
||||
YAML::NodeType::Null &&
|
||||
!config.config_file["Global"]["det_inference_model_dir"]
|
||||
.as<std::string>()
|
||||
.empty()) {
|
||||
detector_ptr = new Detection::ObjectDetector(config.config_file);
|
||||
}
|
||||
|
||||
// initialize feature_extractor
|
||||
Feature::FeatureExtracter *feature_extracter_ptr =
|
||||
new Feature::FeatureExtracter(config.config_file);
|
||||
// initialize vector_searcher
|
||||
VectorSearch *vector_searcher_ptr = new VectorSearch(config.config_file);
|
||||
|
||||
// config
|
||||
const int batch_size = config.config_file["Global"]["batch_size"].as<int>();
|
||||
|
@ -196,9 +205,9 @@ int main(int argc, char **argv) {
|
|||
// load image_file_path
|
||||
std::string path =
|
||||
config.config_file["Global"]["infer_imgs"].as<std::string>();
|
||||
std::vector <std::string> img_files_list;
|
||||
std::vector<std::string> img_files_list;
|
||||
if (cv::utils::fs::isDirectory(path)) {
|
||||
std::vector <cv::String> filenames;
|
||||
std::vector<cv::String> filenames;
|
||||
cv::glob(path, filenames);
|
||||
for (auto f : filenames) {
|
||||
img_files_list.push_back(f);
|
||||
|
@ -213,11 +222,11 @@ int main(int argc, char **argv) {
|
|||
std::vector<double> search_times = {0, 0, 0};
|
||||
int instance_num = 0;
|
||||
// for read images
|
||||
std::vector <cv::Mat> batch_imgs;
|
||||
std::vector <std::string> img_paths;
|
||||
std::vector<cv::Mat> batch_imgs;
|
||||
std::vector<std::string> img_paths;
|
||||
// for detection
|
||||
std::vector <Detection::ObjectResult> det_result;
|
||||
std::vector<int> det_bbox_num;
|
||||
std::vector<Detection::ObjectResult> det_result;
|
||||
|
||||
// for vector search
|
||||
std::vector<float> features;
|
||||
std::vector<float> feature;
|
||||
|
@ -243,9 +252,11 @@ int main(int argc, char **argv) {
|
|||
batch_imgs.push_back(srcimg);
|
||||
img_paths.push_back(img_path);
|
||||
|
||||
// step1: get all detection results
|
||||
DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result,
|
||||
det_bbox_num, det_times, visual_det, false);
|
||||
// step1: get all detection results if enable detector
|
||||
if (detector_ptr != nullptr) {
|
||||
DetPredictImage(batch_imgs, img_paths, batch_size, detector_ptr,
|
||||
det_result, det_times, visual_det, false);
|
||||
}
|
||||
|
||||
// select max_det_results bbox
|
||||
if (det_result.size() > max_det_results) {
|
||||
|
@ -257,7 +268,6 @@ int main(int argc, char **argv) {
|
|||
Detection::ObjectResult result_whole_img = {
|
||||
{0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0};
|
||||
det_result.push_back(result_whole_img);
|
||||
det_bbox_num[0] = det_result.size() + 1;
|
||||
|
||||
// step3: extract feature for all boxes in an inmage
|
||||
SearchResult search_result;
|
||||
|
@ -266,20 +276,22 @@ int main(int argc, char **argv) {
|
|||
int h = det_result[j].rect[3] - det_result[j].rect[1];
|
||||
cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h);
|
||||
cv::Mat crop_img = srcimg(rect);
|
||||
feature_extracter.Run(crop_img, feature, cls_times);
|
||||
feature_extracter_ptr->Run(crop_img, feature, cls_times);
|
||||
features.insert(features.end(), feature.begin(), feature.end());
|
||||
}
|
||||
|
||||
// step4: get search result
|
||||
auto search_start = std::chrono::steady_clock::now();
|
||||
search_result = searcher.Search(features.data(), det_result.size());
|
||||
search_result =
|
||||
vector_searcher_ptr->Search(features.data(), det_result.size());
|
||||
auto search_end = std::chrono::steady_clock::now();
|
||||
|
||||
// nms for search result
|
||||
for (int i = 0; i < det_result.size(); ++i) {
|
||||
det_result[i].confidence = search_result.D[search_result.return_k * i];
|
||||
}
|
||||
NMSBoxes(det_result, searcher.GetThreshold(), rec_nms_thresold, indeices);
|
||||
NMSBoxes(det_result, vector_searcher_ptr->GetThreshold(), rec_nms_thresold,
|
||||
indeices);
|
||||
auto nms_end = std::chrono::steady_clock::now();
|
||||
std::chrono::duration<float> search_diff = search_end - search_start;
|
||||
search_times[1] += double(search_diff.count() * 1000);
|
||||
|
@ -289,12 +301,12 @@ int main(int argc, char **argv) {
|
|||
|
||||
// print result
|
||||
if (not benchmark or (benchmark and idx >= warmup_iter))
|
||||
PrintResult(img_path, det_result, indeices, searcher, search_result);
|
||||
PrintResult(img_path, det_result, indeices, vector_searcher_ptr,
|
||||
search_result);
|
||||
|
||||
// for postprocess
|
||||
batch_imgs.clear();
|
||||
img_paths.clear();
|
||||
det_bbox_num.clear();
|
||||
det_result.clear();
|
||||
feature.clear();
|
||||
features.clear();
|
||||
|
@ -320,10 +332,12 @@ int main(int argc, char **argv) {
|
|||
config.config_file["Global"]["cpu_num_threads"].as<int>();
|
||||
int batch_size = config.config_file["Global"]["batch_size"].as<int>();
|
||||
std::vector<int> shape =
|
||||
config.config_file["Global"]["image_shape"].as < std::vector < int >> ();
|
||||
config.config_file["Global"]["image_shape"].as<std::vector<int>>();
|
||||
std::string det_shape = std::to_string(shape[0]);
|
||||
for (int i = 1; i < shape.size(); ++i)
|
||||
|
||||
for (int i = 1; i < shape.size(); ++i) {
|
||||
det_shape = det_shape + ", " + std::to_string(shape[i]);
|
||||
}
|
||||
|
||||
AutoLogger autolog_det("Det", use_gpu, use_tensorrt, enable_mkldnn,
|
||||
cpu_num_threads, batch_size, det_shape, presion,
|
||||
|
|
Loading…
Reference in New Issue