Merge pull request from littletomatodonkey/dev/fix_vehicle_attr

fix docs of whl
pull/2007/head
Wei Shengyu 2022-06-10 15:29:59 +08:00 committed by GitHub
commit b3f963cdd0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 362 additions and 43 deletions

View File

@ -1,6 +1,6 @@
Global:
infer_imgs: "./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg"
inference_model_dir: "./models/vehicle_attr_infer"
inference_model_dir: "./models/vehicle_attribute_infer"
batch_size: 1
use_gpu: True
enable_mkldnn: True

View File

Before

Width:  |  Height:  |  Size: 5.2 KiB

After

Width:  |  Height:  |  Size: 5.2 KiB

View File

Before

Width:  |  Height:  |  Size: 8.0 KiB

After

Width:  |  Height:  |  Size: 8.0 KiB

View File

@ -39,19 +39,19 @@
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案PULCPractical Ultra Lightweight Classification快速构建轻量级、高精度、可落地的交通标志分类模型。该模型可以广泛应用于自动驾驶、道路监控等场景。
下表列出了不同交通标志分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
下表列出了不同交通标志分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | Top-1 Acc% | 延时ms | 存储M | 策略 |
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny | 98.11 | 89.45 | 111 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | 97.79 | 4.81 | 23 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 93.88 | 3.01 | 3.9 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.78 | 2.10 | 8.2 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 97.84 | 2.10 | 8.2 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 98.14 | 2.10 | 8.2 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>98.35<b> | <b>2.10<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.01%,但是速度提升 1 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.06%进一步地当融合EDA策略后精度可以再提升 0.3%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.21%。此时PPLCNet_x1_0 的精度超越了SwinTranformer_tiny速度快 41 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
从表中可以看出backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低3.9%,同时速度提升 43% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.06%进一步地当融合EDA策略后精度可以再提升 0.3%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.21%。此时PPLCNet_x1_0 的精度超越了 SwinTranformer_tiny速度快 41 倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
@ -62,8 +62,48 @@
## 2. 模型快速体验
pip方式待补充
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```bash
pip3 install paddlepaddle paddleclas
```
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name traffic_sign --infer_imgs PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg
```
结果如下:
```
>>> result
class_ids: [182, 179, 162, 128, 24], scores: [0.98623, 0.01255, 0.00022, 0.00021, 0.00012], label_names: ['pl110', 'pl100', 'pl120', 'p26', 'pm10'], filename: PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg
```
**备注** 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="traffic_sign")
result = model.predict(input_data="PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
```
result
[{'class_ids': [182, 179, 162, 128, 24], 'scores': [0.98623, 0.01255, 0.00022, 0.00021, 0.00012], 'label_names': ['pl110', 'pl100', 'pl120', 'p26', 'pm10'], 'filename': 'PaddleClas/deploy/images/PULC/traffic_sign/100999_83928.jpg'}]
```
<a name="3"></a>

View File

@ -39,20 +39,20 @@
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案PULCPractical Ultra Lightweight Classification快速构建轻量级、高精度、可落地的车辆属性识别模型。该模型可以广泛应用于车辆识别、道路监控等场景。
下表列出了不同车辆属性识别模型的相关指标,前两行展现了使用 Res2Net200_vd_26w_4s 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
下表列出了不同车辆属性识别模型的相关指标,前两行展现了使用 Res2Net200_vd_26w_4s 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
| 模型 | ma% | 延时ms | 存储M | 策略 |
|-------|-----------|----------|---------------|---------------|
| Res2Net200_vd_26w_4s | 91.36 | 79.46 | 293 | 使用ImageNet预训练模型 |
| ResNet50 | 89.98 | 12.83 | 92 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0 | 89.77 | 5.09 | 23 | 使用ImageNet预训练模型 |
| MobileNetV3_small_x0_35 | 87.41 | 2.91 | 2.8 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 89.57 | 2.36 | 8.2 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0 | 90.07 | 2.36 | 8.2 | 使用SSLD预训练模型 |
| PPLCNet_x1_0 | 90.59 | 2.36 | 8.2 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b> | <b>90.81<b> | <b>2.36<b> | <b>8.2<b> | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
从表中可以看出backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.2%,但是速度提升 1 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%进一步地当融合EDA策略后精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%但是速度快32倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
从表中可以看出backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度提升 2.16%,同时速度也提升 23% 左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%进一步地当融合EDA策略后精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%但是速度快32倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
**备注:**
@ -63,8 +63,48 @@
## 2. 模型快速体验
<a name="2.1"></a>
### 2.1 安装 paddleclas
使用如下命令快速安装 paddlepaddle, paddleclas
```bash
pip3 install paddlepaddle paddleclas
```
pip方式待补充
<a name="2.2"></a>
### 2.2 预测
* 使用命令行快速预测
```bash
paddleclas --model_name vehicle_attribute --infer_imgs PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg
```
结果如下:
```
>>> result
attributes: Color: (yellow, prob: 0.9893476963043213), Type: (hatchback, prob: 0.9734097719192505), output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], filename: PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg
ppcls INFO: Predict complete!
```
**备注** 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="vehicle_attribute")
result = model.predict(input_data="PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg")
print(next(result))
```
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="person_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
```
result
[{'attributes': 'Color: (yellow, prob: 0.9893476963043213), Type: (hatchback, prob: 0.9734097719192505)', 'output': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'filename': 'PaddleClas/deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg'}]
```
<a name="3"></a>
@ -94,7 +134,7 @@
部分数据可视化如下所示。
<div align="center">
<img src="../../images/PULC/docs/vehicle_attr_data_demo.png" width = "500" />
<img src="../../images/PULC/docs/vehicle_attribute_data_demo.png" width = "500" />
</div>
首先从[VeRi数据集官网](https://www.v7labs.com/open-datasets/veri-dataset)中申请并下载数据放在PaddleClas的`dataset`目录下,数据集目录名为`VeRi`,使用下面的命令进入该文件夹。
@ -172,17 +212,17 @@ VeRi
### 3.3 模型训练
`ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
`ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
```
验证集的最佳指标在 `90.07%` 左右数据集较小一般有0.3%左右的波动)。
验证集的最佳指标在 `90.59%` 左右数据集较小一般有0.3%左右的波动)。
<a name="3.4"></a>
@ -193,7 +233,7 @@ python3 -m paddle.distributed.launch \
```bash
python3 tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```
@ -207,21 +247,21 @@ python3 tools/eval.py \
```bash
python3 tools/infer.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model
```
输出结果如下:
```
[{'attr': 'Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.9734100103378296)', 'pred': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'file_name': './deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg'}]
[{'attr': 'Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.9734100103378296)', 'pred': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'file_name': './deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg'}]
```
**备注:**
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
* 默认是对 `./deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
* 默认是对 `./deploy/images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
<a name="4"></a>
@ -237,14 +277,14 @@ SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方
#### 4.1.1 教师模型训练
复用 `ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
复用 `ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Arch.name=ResNet101_vd
```
@ -254,14 +294,14 @@ python3 -m paddle.distributed.launch \
#### 4.1.2 蒸馏训练
配置文件`ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
配置文件`ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0_distillation.yaml \
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```
@ -296,14 +336,14 @@ Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端
```bash
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/DistillationModel/best_model_student \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attr_infer
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attribute_infer
```
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_vehicle_attr_infer` 文件夹,`models` 文件夹下应有如下文件结构:
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_vehicle_attributeibute_infer` 文件夹,`models` 文件夹下应有如下文件结构:
```
├── PPLCNet_x1_0_vehicle_attr_infer
├── PPLCNet_x1_0_vehicle_attribute_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
@ -320,13 +360,13 @@ python3 tools/export_model.py \
```
cd deploy/models
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar -xf vehicle_attr_infer.tar
wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attribute_infer.tar && tar -xf vehicle_attribute_infer.tar
```
解压完毕后,`models` 文件夹下应有如下文件结构:
```
├── vehicle_attr_infer
├── vehicle_attribute_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
@ -347,13 +387,13 @@ wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar
cd ../
```
运行下面的命令,对图像 `./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行车辆属性识别。
运行下面的命令,对图像 `./images/PULC/vehicle_attribute/0002_c002_00030670_0.jpg` 进行车辆属性识别。
```shell
# 使用下面的命令使用 GPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=True
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.use_gpu=True
# 使用下面的命令使用 CPU 进行预测
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.use_gpu=False
```
输出结果如下。
@ -371,7 +411,7 @@ predict output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.infer_imgs="./images/PULC/vehicle_attr/"
python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehicle_attribute.yaml -o Global.infer_imgs="./images/PULC/vehicle_attribute/"
```
终端中会输出该文件夹内所有图像的属性识别结果,如下所示。

View File

@ -11,8 +11,9 @@
- [1.2 PaddleClas支持的知识蒸馏算法](#1.2)
- [1.2.1 SSLD](#1.2.1)
- [1.2.2 DML](#1.2.2)
- [1.2.3 AFD](#1.2.3)
- [1.2.4 DKD](#1.2.4)
- [1.2.3 UDML](#1.2.3)
- [1.2.4 AFD](#1.2.4)
- [1.2.5 DKD](#1.2.5)
- [2. 使用方法](#2)
- [2.1 环境配置](#2.1)
- [2.2 数据准备](#2.2)
@ -196,9 +197,80 @@ Loss:
<a name='1.2.3'></a>
#### 1.2.3 AFD
#### 1.2.3 UDML
##### 1.2.3.1 AFD 算法介绍
##### 1.2.3.1 UDML 算法介绍
论文信息:
UDML 是百度飞桨视觉团队提出的无需依赖教师模型的知识蒸馏算法它基于DML进行改进在蒸馏的过程中除了考虑两个模型的输出信息也考虑两个模型的中间层特征信息从而进一步提升知识蒸馏的精度。更多关于UDML的说明与应用请参考[PP-ShiTu论文](https://arxiv.org/abs/2111.00775)以及[PP-OCRv3论文](https://arxiv.org/abs/2109.03144)。
在ImageNet1k公开数据集上效果如下所示。
| 策略 | 骨干网络 | 配置文件 | Top-1 acc | 下载链接 |
| --- | --- | --- | --- | --- |
| baseline | PPLCNet_x2_5 | [PPLCNet_x2_5.yaml](../../../ppcls/configs/ImageNet/PPLCNet/PPLCNet_x2_5.yaml) | 74.93% | - |
| UDML | PPLCNet_x2_5 | [PPLCNet_x2_5_dml.yaml](../../../ppcls/configs/ImageNet/Distillation/PPLCNet_x2_5_udml.yaml) | 76.74%(**+1.81%**) | - |
##### 1.2.3.2 UDML 配置
```yaml
Arch:
name: "DistillationModel"
class_num: &class_num 1000
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- False
- False
models:
- Teacher:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
# return_patterns表示除了返回输出的logits也会返回对应名称的中间层feature map
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
- Student:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
# loss function config for traing/eval process
Loss:
Train:
- DistillationGTCELoss:
weight: 1.0
key: logits
model_names: ["Student", "Teacher"]
- DistillationDMLLoss:
weight: 1.0
key: logits
model_name_pairs:
- ["Student", "Teacher"]
- DistillationDistanceLoss: # 基于蒸馏结果的距离loss这里默认使用l2 loss计算block5之间的损失函数
weight: 1.0
key: "blocks5"
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- CELoss:
weight: 1.0
```
**注意(** 上述在网络中指定`return_patterns`返回中间层特征的功能是基于TheseusLayer更多关于TheseusLayer的使用说明请参考[TheseusLayer 使用说明](./theseus_layer.md)。
<a name='1.2.4'></a>
#### 1.2.4 AFD
##### 1.2.4.1 AFD 算法介绍
论文信息:
@ -220,7 +292,7 @@ AFD提出在蒸馏的过程中利用基于注意力的元网络学习特征
注意这里为了与论文的训练配置保持对齐设置训练的迭代轮数为100epoch因此baseline精度低于PaddleClas中开源出的模型精度71.0%
##### 1.2.3.2 AFD 配置
##### 1.2.4.2 AFD 配置
AFD配置如下所示。在模型构建Arch字段中需要同时定义学生模型与教师模型固定教师模型的权重。这里需要对从教师模型获取的特征进行变换进而与学生模型进行损失函数的计算。在损失函数Loss字段中需要定义`DistillationKLDivLoss`学生与教师之间的KL-Div loss、`AFDLoss`学生与教师之间的AFD loss以及`DistillationGTCELoss`学生与教师关于真值标签的CE loss作为训练的损失函数。
@ -305,11 +377,11 @@ Loss:
**注意(** 上述在网络中指定`return_patterns`返回中间层特征的功能是基于TheseusLayer更多关于TheseusLayer的使用说明请参考[TheseusLayer 使用说明](./theseus_layer.md)。
<a name='1.2.4'></a>
<a name='1.2.5'></a>
#### 1.2.4 DKD
#### 1.2.5 DKD
##### 1.2.4.1 DKD 算法介绍
##### 1.2.5.1 DKD 算法介绍
论文信息:
@ -330,7 +402,7 @@ DKD将蒸馏中常用的 KD Loss 进行了解耦成为Target Class Knowledge Dis
| AFD | ResNet18 | [resnet34_distill_resnet18_dkd.yaml](../../../ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_dkd.yaml) | 72.59%(**+1.79%**) | - |
##### 1.2.4.2 DKD 配置
##### 1.2.5.2 DKD 配置
DKD 配置如下所示。在模型构建Arch字段中需要同时定义学生模型与教师模型教师模型固定参数且需要加载预训练模型。在损失函数Loss字段中需要定义`DistillationDKDLoss`学生与教师之间的DKD loss以及`DistillationGTCELoss`学生与教师关于真值标签的CE loss作为训练的损失函数。

View File

@ -0,0 +1,167 @@
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output_lcnet_x2_5_udml
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 100
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
AMP:
scale_loss: 128.0
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model architecture
Arch:
name: "DistillationModel"
class_num: &class_num 1000
# if not null, its lengths should be same as models
pretrained_list:
# if not null, its lengths should be same as models
freeze_params_list:
- False
- False
models:
- Teacher:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
- Student:
name: PPLCNet_x2_5
class_num: *class_num
pretrained: False
return_patterns: ["blocks3", "blocks4", "blocks5", "blocks6"]
# loss function config for traing/eval process
Loss:
Train:
- DistillationGTCELoss:
weight: 1.0
key: logits
model_names: ["Student", "Teacher"]
- DistillationDMLLoss:
weight: 1.0
key: logits
model_name_pairs:
- ["Student", "Teacher"]
- DistillationDistanceLoss:
weight: 1.0
key: "blocks5"
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.4
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]
Eval:
- DistillationTopkAcc:
model_key: "Student"
topk: [1, 5]

View File

@ -16,7 +16,7 @@ Global:
# model architecture
Arch:
name: MobileNetV3_large_x1_0
name: MobileNetV3_small_x0_35
class_num: 232
pretrained: True
@ -40,7 +40,7 @@ Optimizer:
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00002
coeff: 0.00001
# data loader for train and eval

View File

@ -17,7 +17,7 @@ Global:
# model architecture
Arch:
name: "MobileNetV3_large_x1_0"
name: "MobileNetV3_small_x0_35"
pretrained: True
class_num: 19
infer_add_softmax: False