update bash scripts and related python file to develop version
parent
d76705288d
commit
b574a47d6e
|
@ -1,7 +1,14 @@
|
|||
nohup python3 -m paddle_serving_server.serve \
|
||||
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving \
|
||||
--port 9293 >>log_mainbody_detection.txt 1&>2 &
|
||||
gpu_id=$1
|
||||
|
||||
nohup python3 -m paddle_serving_server.serve \
|
||||
--model ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
|
||||
--port 9294 >>log_feature_extraction.txt 1&>2 &
|
||||
# PP-ShiTu CPP serving script
|
||||
if [[ -n "${gpu_id}" ]]; then
|
||||
nohup python3.7 -m paddle_serving_server.serve \
|
||||
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
|
||||
--op GeneralPicodetOp GeneralFeatureExtractOp \
|
||||
--port 9400 --gpu_id="${gpu_id}" > log_PPShiTu.txt 2>&1 &
|
||||
else
|
||||
nohup python3.7 -m paddle_serving_server.serve \
|
||||
--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
|
||||
--op GeneralPicodetOp GeneralFeatureExtractOp \
|
||||
--port 9400 > log_PPShiTu.txt 2>&1 &
|
||||
fi
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
|
||||
from paddle_serving_client import Client
|
||||
|
@ -22,181 +21,101 @@ import faiss
|
|||
import os
|
||||
import pickle
|
||||
|
||||
|
||||
class MainbodyDetect():
|
||||
"""
|
||||
pp-shitu mainbody detect.
|
||||
include preprocess, process, postprocess
|
||||
return detect results
|
||||
Attention: Postprocess include num limit and box filter; no nms
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.preprocess = DetectionSequential([
|
||||
DetectionFile2Image(), DetectionNormalize(
|
||||
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
|
||||
DetectionResize(
|
||||
(640, 640), False, interpolation=2), DetectionTranspose(
|
||||
(2, 0, 1))
|
||||
])
|
||||
|
||||
self.client = Client()
|
||||
self.client.load_client_config(
|
||||
"../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/serving_client_conf.prototxt"
|
||||
)
|
||||
self.client.connect(['127.0.0.1:9293'])
|
||||
|
||||
self.max_det_result = 5
|
||||
self.conf_threshold = 0.2
|
||||
|
||||
def predict(self, imgpath):
|
||||
im, im_info = self.preprocess(imgpath)
|
||||
im_shape = np.array(im.shape[1:]).reshape(-1)
|
||||
scale_factor = np.array(list(im_info['scale_factor'])).reshape(-1)
|
||||
|
||||
fetch_map = self.client.predict(
|
||||
feed={
|
||||
"image": im,
|
||||
"im_shape": im_shape,
|
||||
"scale_factor": scale_factor,
|
||||
},
|
||||
fetch=["save_infer_model/scale_0.tmp_1"],
|
||||
batch=False)
|
||||
return self.postprocess(fetch_map, imgpath)
|
||||
|
||||
def postprocess(self, fetch_map, imgpath):
|
||||
#1. get top max_det_result
|
||||
det_results = fetch_map["save_infer_model/scale_0.tmp_1"]
|
||||
if len(det_results) > self.max_det_result:
|
||||
boxes_reserved = fetch_map[
|
||||
"save_infer_model/scale_0.tmp_1"][:self.max_det_result]
|
||||
else:
|
||||
boxes_reserved = det_results
|
||||
|
||||
#2. do conf threshold
|
||||
boxes_list = []
|
||||
for i in range(boxes_reserved.shape[0]):
|
||||
if (boxes_reserved[i, 1]) > self.conf_threshold:
|
||||
boxes_list.append(boxes_reserved[i, :])
|
||||
|
||||
#3. add origin image box
|
||||
origin_img = cv2.imread(imgpath)
|
||||
boxes_list.append(
|
||||
np.array([0, 1.0, 0, 0, origin_img.shape[1], origin_img.shape[0]]))
|
||||
return np.array(boxes_list)
|
||||
rec_nms_thresold = 0.05
|
||||
rec_score_thres = 0.5
|
||||
feature_normalize = True
|
||||
return_k = 1
|
||||
index_dir = "../../drink_dataset_v1.0/index"
|
||||
|
||||
|
||||
class ObjectRecognition():
|
||||
"""
|
||||
pp-shitu object recognion for all objects detected by MainbodyDetect.
|
||||
include preprocess, process, postprocess
|
||||
preprocess include preprocess for each image and batching.
|
||||
Batch process
|
||||
postprocess include retrieval and nms
|
||||
"""
|
||||
def init_index(index_dir):
|
||||
assert os.path.exists(os.path.join(
|
||||
index_dir, "vector.index")), "vector.index not found ..."
|
||||
assert os.path.exists(os.path.join(
|
||||
index_dir, "id_map.pkl")), "id_map.pkl not found ... "
|
||||
|
||||
def __init__(self):
|
||||
self.client = Client()
|
||||
self.client.load_client_config(
|
||||
"../../models/general_PPLCNet_x2_5_lite_v1.0_client/serving_client_conf.prototxt"
|
||||
)
|
||||
self.client.connect(["127.0.0.1:9294"])
|
||||
searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))
|
||||
|
||||
self.seq = Sequential([
|
||||
BGR2RGB(), Resize((224, 224)), Div(255),
|
||||
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
|
||||
False), Transpose((2, 0, 1))
|
||||
])
|
||||
|
||||
self.searcher, self.id_map = self.init_index()
|
||||
|
||||
self.rec_nms_thresold = 0.05
|
||||
self.rec_score_thres = 0.5
|
||||
self.feature_normalize = True
|
||||
self.return_k = 1
|
||||
|
||||
def init_index(self):
|
||||
index_dir = "../../drink_dataset_v1.0/index"
|
||||
assert os.path.exists(os.path.join(
|
||||
index_dir, "vector.index")), "vector.index not found ..."
|
||||
assert os.path.exists(os.path.join(
|
||||
index_dir, "id_map.pkl")), "id_map.pkl not found ... "
|
||||
|
||||
searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))
|
||||
|
||||
with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
|
||||
id_map = pickle.load(fd)
|
||||
return searcher, id_map
|
||||
|
||||
def predict(self, det_boxes, imgpath):
|
||||
#1. preprocess
|
||||
batch_imgs = []
|
||||
origin_img = cv2.imread(imgpath)
|
||||
for i in range(det_boxes.shape[0]):
|
||||
box = det_boxes[i]
|
||||
x1, y1, x2, y2 = [int(x) for x in box[2:]]
|
||||
cropped_img = origin_img[y1:y2, x1:x2, :].copy()
|
||||
tmp = self.seq(cropped_img)
|
||||
batch_imgs.append(tmp)
|
||||
batch_imgs = np.array(batch_imgs)
|
||||
|
||||
#2. process
|
||||
fetch_map = self.client.predict(
|
||||
feed={"x": batch_imgs}, fetch=["features"], batch=True)
|
||||
batch_features = fetch_map["features"]
|
||||
|
||||
#3. postprocess
|
||||
if self.feature_normalize:
|
||||
feas_norm = np.sqrt(
|
||||
np.sum(np.square(batch_features), axis=1, keepdims=True))
|
||||
batch_features = np.divide(batch_features, feas_norm)
|
||||
scores, docs = self.searcher.search(batch_features, self.return_k)
|
||||
|
||||
results = []
|
||||
for i in range(scores.shape[0]):
|
||||
pred = {}
|
||||
if scores[i][0] >= self.rec_score_thres:
|
||||
pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
|
||||
pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
|
||||
pred["rec_scores"] = scores[i][0]
|
||||
results.append(pred)
|
||||
return self.nms_to_rec_results(results)
|
||||
|
||||
def nms_to_rec_results(self, results):
|
||||
filtered_results = []
|
||||
x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
|
||||
y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
|
||||
x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
|
||||
y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
|
||||
scores = np.array([r["rec_scores"] for r in results])
|
||||
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= self.rec_nms_thresold)[0]
|
||||
order = order[inds + 1]
|
||||
filtered_results.append(results[i])
|
||||
return filtered_results
|
||||
with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
|
||||
id_map = pickle.load(fd)
|
||||
return searcher, id_map
|
||||
|
||||
|
||||
#get box
|
||||
def nms_to_rec_results(results, thresh=0.1):
|
||||
filtered_results = []
|
||||
|
||||
x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
|
||||
y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
|
||||
x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
|
||||
y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
|
||||
scores = np.array([r["rec_scores"] for r in results])
|
||||
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= thresh)[0]
|
||||
order = order[inds + 1]
|
||||
filtered_results.append(results[i])
|
||||
return filtered_results
|
||||
|
||||
|
||||
def postprocess(fetch_dict, feature_normalize, det_boxes, searcher, id_map,
|
||||
return_k, rec_score_thres, rec_nms_thresold):
|
||||
batch_features = fetch_dict["features"]
|
||||
|
||||
#do feature norm
|
||||
if feature_normalize:
|
||||
feas_norm = np.sqrt(
|
||||
np.sum(np.square(batch_features), axis=1, keepdims=True))
|
||||
batch_features = np.divide(batch_features, feas_norm)
|
||||
|
||||
scores, docs = searcher.search(batch_features, return_k)
|
||||
|
||||
results = []
|
||||
for i in range(scores.shape[0]):
|
||||
pred = {}
|
||||
if scores[i][0] >= rec_score_thres:
|
||||
pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
|
||||
pred["rec_docs"] = id_map[docs[i][0]].split()[1]
|
||||
pred["rec_scores"] = scores[i][0]
|
||||
results.append(pred)
|
||||
|
||||
#do nms
|
||||
results = nms_to_rec_results(results, rec_nms_thresold)
|
||||
return results
|
||||
|
||||
|
||||
#do client
|
||||
if __name__ == "__main__":
|
||||
det = MainbodyDetect()
|
||||
rec = ObjectRecognition()
|
||||
client = Client()
|
||||
client.load_client_config([
|
||||
"../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client",
|
||||
"../../models/general_PPLCNet_x2_5_lite_v1.0_client"
|
||||
])
|
||||
client.connect(['127.0.0.1:9400'])
|
||||
|
||||
#1. get det_results
|
||||
imgpath = "../../drink_dataset_v1.0/test_images/001.jpeg"
|
||||
det_results = det.predict(imgpath)
|
||||
im = cv2.imread("../../drink_dataset_v1.0/test_images/001.jpeg")
|
||||
im_shape = np.array(im.shape[:2]).reshape(-1)
|
||||
fetch_map = client.predict(
|
||||
feed={"image": im,
|
||||
"im_shape": im_shape},
|
||||
fetch=["features", "boxes"],
|
||||
batch=False)
|
||||
|
||||
#2. get rec_results
|
||||
rec_results = rec.predict(det_results, imgpath)
|
||||
print(rec_results)
|
||||
#add retrieval procedure
|
||||
det_boxes = fetch_map["boxes"]
|
||||
searcher, id_map = init_index(index_dir)
|
||||
results = postprocess(fetch_map, feature_normalize, det_boxes, searcher,
|
||||
id_map, return_k, rec_score_thres, rec_nms_thresold)
|
||||
print(results)
|
||||
|
|
|
@ -1,2 +1,14 @@
|
|||
#run cls server:
|
||||
nohup python3 -m paddle_serving_server.serve --model ResNet50_vd_serving --port 9292 &
|
||||
gpu_id=$1
|
||||
|
||||
# ResNet50_vd CPP serving script
|
||||
if [[ -n "${gpu_id}" ]]; then
|
||||
nohup python3.7 -m paddle_serving_server.serve \
|
||||
--model ./ResNet50_vd_serving \
|
||||
--op GeneralClasOp \
|
||||
--port 9292 &
|
||||
else
|
||||
nohup python3.7 -m paddle_serving_server.serve \
|
||||
--model ./ResNet50_vd_serving \
|
||||
--op GeneralClasOp \
|
||||
--port 9292 --gpu_id="${gpu_id}" &
|
||||
fi
|
Loading…
Reference in New Issue