Update se_resnext.py

pull/283/head
cuicheng01 2020-09-18 00:08:06 +08:00 committed by GitHub
parent 39c24c1cb6
commit b7b5a0c3c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 257 additions and 217 deletions

View File

@ -1,253 +1,293 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# #
#Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
#You may obtain a copy of the License at # You may obtain a copy of the License at
# #
# http://www.apache.org/licenses/LICENSE-2.0 # http://www.apache.org/licenses/LICENSE-2.0
# #
#Unless required by applicable law or agreed to in writing, software # Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS, # distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
#limitations under the License. # limitations under the License.
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
import math import math
import paddle __all__ = ["SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d", "SE_ResNeXt152_64x4d"]
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"SE_ResNeXt", "SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d",
"SE_ResNeXt152_32x4d"
]
class SE_ResNeXt(): class ConvBNLayer(nn.Layer):
def __init__(self, layers=50): def __init__(
self.layers = layers self,
num_channels,
def net(self, input, class_dim=1000): num_filters,
layers = self.layers filter_size,
supported_layers = [50, 101, 152] stride=1,
assert layers in supported_layers, \ groups=1,
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name='conv1', )
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max',
use_cudnn=False)
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1", )
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max',
use_cudnn=False)
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name='conv1')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv2')
conv = self.conv_bn_layer(
input=conv,
num_filters=128,
filter_size=3,
stride=1,
act='relu',
name='conv3')
conv = fluid.layers.pool2d(
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
pool_type='max', use_cudnn=False)
n = 1 if layers == 50 or layers == 101 else 3
for block in range(len(depth)):
n += 1
for i in range(depth[block]):
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio,
name=str(n) + '_' + str(i + 1))
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
drop = fluid.layers.dropout(x=pool, dropout_prob=0.5)
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
out = fluid.layers.fc(
input=drop,
size=class_dim,
param_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name='fc6_weights'),
bias_attr=ParamAttr(name='fc6_offset'))
return out
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
filter_size = 1
return self.conv_bn_layer(
input,
ch_out,
filter_size,
stride,
name='conv' + name + '_prj')
else:
return input
def bottleneck_block(self,
input,
num_filters,
stride,
cardinality,
reduction_ratio,
name=None):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name='conv' + name + '_x1')
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu',
name='conv' + name + '_x2')
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 2,
filter_size=1,
act=None, act=None,
name='conv' + name + '_x3') name=None):
scale = self.squeeze_excitation( super(ConvBNLayer, self).__init__()
input=conv2,
num_channels=num_filters * 2,
reduction_ratio=reduction_ratio,
name='fc' + name)
short = self.shortcut(input, num_filters * 2, stride, name=name) self._conv = Conv2d(
in_channels=num_channels,
return fluid.layers.elementwise_add(x=short, y=scale, act='relu') out_channels=num_filters,
kernel_size=filter_size,
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride, stride=stride,
padding=(filter_size - 1) // 2, padding=(filter_size - 1) // 2,
groups=groups, groups=groups,
act=None, weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False, bias_attr=False)
param_attr=ParamAttr(name=name + '_weights'), ) bn_name = name + '_bn'
bn_name = name + "_bn" self._batch_norm = BatchNorm(
return fluid.layers.batch_norm( num_filters,
input=conv,
act=act, act=act,
param_attr=ParamAttr(name=bn_name + '_scale'), param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'), bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean', moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance') moving_variance_name=bn_name + '_variance')
def squeeze_excitation(self, def forward(self, inputs):
input, y = self._conv(inputs)
num_channels, y = self._batch_norm(y)
reduction_ratio, return y
name=None):
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False) class BottleneckBlock(nn.Layer):
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) def __init__(self,
squeeze = fluid.layers.fc( num_channels,
input=pool, num_filters,
size=num_channels // reduction_ratio, stride,
cardinality,
reduction_ratio,
shortcut=True,
if_first=False,
name=None):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu', act='relu',
param_attr=fluid.param_attr.ParamAttr( name='conv' + name + '_x1')
initializer=fluid.initializer.Uniform(-stdv, stdv), self.conv1 = ConvBNLayer(
name=name + '_sqz_weights'), num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu',
name='conv' + name + '_x2')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None,
name='conv' + name + '_x3')
self.scale = SELayer(
num_channels=num_filters * 2 if cardinality == 32 else num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
reduction_ratio=reduction_ratio,
name='fc' + name)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=stride,
name='conv' + name + '_prj')
self.shortcut = shortcut
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = paddle.elementwise_add(x=short, y=scale, act='relu')
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2d(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv),
name=name + "_sqz_weights"),
bias_attr=ParamAttr(name=name + '_sqz_offset')) bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) self.relu = nn.ReLU()
excitation = fluid.layers.fc( stdv = 1.0 / math.sqrt(med_ch * 1.0)
input=squeeze, self.excitation = Linear(
size=num_channels, med_ch,
act='sigmoid', num_filters,
param_attr=fluid.param_attr.ParamAttr( weight_attr=ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv), initializer=Uniform(-stdv, stdv),
name=name + '_exc_weights'), name=name + "_exc_weights"),
bias_attr=ParamAttr(name=name + '_exc_offset')) bias_attr=ParamAttr(name=name + '_exc_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) self.sigmoid = nn.Sigmoid()
return scale
def forward(self, input):
pool = self.pool2d_gap(input)
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
squeeze = self.squeeze(pool)
squeeze = self.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = self.sigmoid(excitation)
excitation = paddle.reshape(
excitation, shape=[-1, self._num_channels, 1, 1])
out = input * excitation
return out
def SE_ResNeXt50_32x4d(): class ResNeXt(nn.Layer):
model = SE_ResNeXt(layers=50) def __init__(self, layers=50, class_dim=1000, cardinality=32):
super(ResNeXt, self).__init__()
self.layers = layers
self.cardinality = cardinality
self.reduction_ratio = 16
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(
supported_layers, layers)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
if layers < 152:
self.conv = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1")
else:
self.conv1_1 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
act='relu',
name="conv1")
self.conv1_2 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name="conv2")
self.conv1_3 = ConvBNLayer(
num_channels=64,
num_filters=128,
filter_size=3,
stride=1,
act='relu',
name="conv3")
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
self.block_list = []
n = 1 if layers == 50 or layers == 101 else 3
for block in range(len(depth)):
n += 1
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
reduction_ratio=self.reduction_ratio,
shortcut=shortcut,
if_first=block == 0,
name=str(n) + '_' + str(i + 1)))
self.block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = AdaptiveAvgPool2d(1)
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
class_dim,
weight_attr=ParamAttr(
initializer=Uniform(-stdv, stdv),
name="fc6_weights"),
bias_attr=ParamAttr(name="fc6_offset"))
def forward(self, inputs):
if self.layers < 152:
y = self.conv(inputs)
else:
y = self.conv1_1(inputs)
y = self.conv1_2(y)
y = self.conv1_3(y)
y = self.pool2d_max(y)
for block in self.block_list:
y = block(y)
y = self.pool2d_avg(y)
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
y = self.out(y)
return y
def SE_ResNeXt50_32x4d(**args):
model = ResNeXt(layers=50, cardinality=32, **args)
return model return model
def SE_ResNeXt101_32x4d(): def SE_ResNeXt101_32x4d(**args):
model = SE_ResNeXt(layers=101) model = ResNeXt(layers=101, cardinality=32, **args)
return model return model
def SE_ResNeXt152_32x4d(): def SE_ResNeXt152_64x4d(**args):
model = SE_ResNeXt(layers=152) model = ResNeXt(layers=152, cardinality=64, **args)
return model return model