Update se_resnext.py
parent
39c24c1cb6
commit
b7b5a0c3c6
|
@ -1,253 +1,293 @@
|
||||||
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||||
#
|
#
|
||||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
#you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
#You may obtain a copy of the License at
|
# You may obtain a copy of the License at
|
||||||
#
|
#
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
#
|
#
|
||||||
#Unless required by applicable law or agreed to in writing, software
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
#See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
#limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
from paddle import ParamAttr
|
||||||
|
import paddle.nn as nn
|
||||||
|
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
|
||||||
|
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
|
||||||
|
from paddle.nn.initializer import Uniform
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import paddle
|
__all__ = ["SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d", "SE_ResNeXt152_64x4d"]
|
||||||
import paddle.fluid as fluid
|
|
||||||
from paddle.fluid.param_attr import ParamAttr
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"SE_ResNeXt", "SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d",
|
|
||||||
"SE_ResNeXt152_32x4d"
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
class SE_ResNeXt():
|
class ConvBNLayer(nn.Layer):
|
||||||
def __init__(self, layers=50):
|
def __init__(
|
||||||
self.layers = layers
|
self,
|
||||||
|
num_channels,
|
||||||
def net(self, input, class_dim=1000):
|
num_filters,
|
||||||
layers = self.layers
|
filter_size,
|
||||||
supported_layers = [50, 101, 152]
|
stride=1,
|
||||||
assert layers in supported_layers, \
|
groups=1,
|
||||||
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
|
||||||
if layers == 50:
|
|
||||||
cardinality = 32
|
|
||||||
reduction_ratio = 16
|
|
||||||
depth = [3, 4, 6, 3]
|
|
||||||
num_filters = [128, 256, 512, 1024]
|
|
||||||
|
|
||||||
conv = self.conv_bn_layer(
|
|
||||||
input=input,
|
|
||||||
num_filters=64,
|
|
||||||
filter_size=7,
|
|
||||||
stride=2,
|
|
||||||
act='relu',
|
|
||||||
name='conv1', )
|
|
||||||
conv = fluid.layers.pool2d(
|
|
||||||
input=conv,
|
|
||||||
pool_size=3,
|
|
||||||
pool_stride=2,
|
|
||||||
pool_padding=1,
|
|
||||||
pool_type='max',
|
|
||||||
use_cudnn=False)
|
|
||||||
elif layers == 101:
|
|
||||||
cardinality = 32
|
|
||||||
reduction_ratio = 16
|
|
||||||
depth = [3, 4, 23, 3]
|
|
||||||
num_filters = [128, 256, 512, 1024]
|
|
||||||
|
|
||||||
conv = self.conv_bn_layer(
|
|
||||||
input=input,
|
|
||||||
num_filters=64,
|
|
||||||
filter_size=7,
|
|
||||||
stride=2,
|
|
||||||
act='relu',
|
|
||||||
name="conv1", )
|
|
||||||
conv = fluid.layers.pool2d(
|
|
||||||
input=conv,
|
|
||||||
pool_size=3,
|
|
||||||
pool_stride=2,
|
|
||||||
pool_padding=1,
|
|
||||||
pool_type='max',
|
|
||||||
use_cudnn=False)
|
|
||||||
elif layers == 152:
|
|
||||||
cardinality = 64
|
|
||||||
reduction_ratio = 16
|
|
||||||
depth = [3, 8, 36, 3]
|
|
||||||
num_filters = [128, 256, 512, 1024]
|
|
||||||
|
|
||||||
conv = self.conv_bn_layer(
|
|
||||||
input=input,
|
|
||||||
num_filters=64,
|
|
||||||
filter_size=3,
|
|
||||||
stride=2,
|
|
||||||
act='relu',
|
|
||||||
name='conv1')
|
|
||||||
conv = self.conv_bn_layer(
|
|
||||||
input=conv,
|
|
||||||
num_filters=64,
|
|
||||||
filter_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv2')
|
|
||||||
conv = self.conv_bn_layer(
|
|
||||||
input=conv,
|
|
||||||
num_filters=128,
|
|
||||||
filter_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv3')
|
|
||||||
conv = fluid.layers.pool2d(
|
|
||||||
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
|
|
||||||
pool_type='max', use_cudnn=False)
|
|
||||||
n = 1 if layers == 50 or layers == 101 else 3
|
|
||||||
for block in range(len(depth)):
|
|
||||||
n += 1
|
|
||||||
for i in range(depth[block]):
|
|
||||||
conv = self.bottleneck_block(
|
|
||||||
input=conv,
|
|
||||||
num_filters=num_filters[block],
|
|
||||||
stride=2 if i == 0 and block != 0 else 1,
|
|
||||||
cardinality=cardinality,
|
|
||||||
reduction_ratio=reduction_ratio,
|
|
||||||
name=str(n) + '_' + str(i + 1))
|
|
||||||
|
|
||||||
pool = fluid.layers.pool2d(
|
|
||||||
input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
|
|
||||||
drop = fluid.layers.dropout(x=pool, dropout_prob=0.5)
|
|
||||||
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
|
|
||||||
out = fluid.layers.fc(
|
|
||||||
input=drop,
|
|
||||||
size=class_dim,
|
|
||||||
param_attr=ParamAttr(
|
|
||||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
|
||||||
name='fc6_weights'),
|
|
||||||
bias_attr=ParamAttr(name='fc6_offset'))
|
|
||||||
return out
|
|
||||||
|
|
||||||
def shortcut(self, input, ch_out, stride, name):
|
|
||||||
ch_in = input.shape[1]
|
|
||||||
if ch_in != ch_out or stride != 1:
|
|
||||||
filter_size = 1
|
|
||||||
return self.conv_bn_layer(
|
|
||||||
input,
|
|
||||||
ch_out,
|
|
||||||
filter_size,
|
|
||||||
stride,
|
|
||||||
name='conv' + name + '_prj')
|
|
||||||
else:
|
|
||||||
return input
|
|
||||||
|
|
||||||
def bottleneck_block(self,
|
|
||||||
input,
|
|
||||||
num_filters,
|
|
||||||
stride,
|
|
||||||
cardinality,
|
|
||||||
reduction_ratio,
|
|
||||||
name=None):
|
|
||||||
conv0 = self.conv_bn_layer(
|
|
||||||
input=input,
|
|
||||||
num_filters=num_filters,
|
|
||||||
filter_size=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv' + name + '_x1')
|
|
||||||
conv1 = self.conv_bn_layer(
|
|
||||||
input=conv0,
|
|
||||||
num_filters=num_filters,
|
|
||||||
filter_size=3,
|
|
||||||
stride=stride,
|
|
||||||
groups=cardinality,
|
|
||||||
act='relu',
|
|
||||||
name='conv' + name + '_x2')
|
|
||||||
conv2 = self.conv_bn_layer(
|
|
||||||
input=conv1,
|
|
||||||
num_filters=num_filters * 2,
|
|
||||||
filter_size=1,
|
|
||||||
act=None,
|
act=None,
|
||||||
name='conv' + name + '_x3')
|
name=None):
|
||||||
scale = self.squeeze_excitation(
|
super(ConvBNLayer, self).__init__()
|
||||||
input=conv2,
|
|
||||||
num_channels=num_filters * 2,
|
|
||||||
reduction_ratio=reduction_ratio,
|
|
||||||
name='fc' + name)
|
|
||||||
|
|
||||||
short = self.shortcut(input, num_filters * 2, stride, name=name)
|
self._conv = Conv2d(
|
||||||
|
in_channels=num_channels,
|
||||||
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
out_channels=num_filters,
|
||||||
|
kernel_size=filter_size,
|
||||||
def conv_bn_layer(self,
|
|
||||||
input,
|
|
||||||
num_filters,
|
|
||||||
filter_size,
|
|
||||||
stride=1,
|
|
||||||
groups=1,
|
|
||||||
act=None,
|
|
||||||
name=None):
|
|
||||||
conv = fluid.layers.conv2d(
|
|
||||||
input=input,
|
|
||||||
num_filters=num_filters,
|
|
||||||
filter_size=filter_size,
|
|
||||||
stride=stride,
|
stride=stride,
|
||||||
padding=(filter_size - 1) // 2,
|
padding=(filter_size - 1) // 2,
|
||||||
groups=groups,
|
groups=groups,
|
||||||
act=None,
|
weight_attr=ParamAttr(name=name + "_weights"),
|
||||||
bias_attr=False,
|
bias_attr=False)
|
||||||
param_attr=ParamAttr(name=name + '_weights'), )
|
bn_name = name + '_bn'
|
||||||
bn_name = name + "_bn"
|
self._batch_norm = BatchNorm(
|
||||||
return fluid.layers.batch_norm(
|
num_filters,
|
||||||
input=conv,
|
|
||||||
act=act,
|
act=act,
|
||||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||||
moving_mean_name=bn_name + '_mean',
|
moving_mean_name=bn_name + '_mean',
|
||||||
moving_variance_name=bn_name + '_variance')
|
moving_variance_name=bn_name + '_variance')
|
||||||
|
|
||||||
def squeeze_excitation(self,
|
def forward(self, inputs):
|
||||||
input,
|
y = self._conv(inputs)
|
||||||
num_channels,
|
y = self._batch_norm(y)
|
||||||
reduction_ratio,
|
return y
|
||||||
name=None):
|
|
||||||
pool = fluid.layers.pool2d(
|
|
||||||
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
|
class BottleneckBlock(nn.Layer):
|
||||||
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
|
def __init__(self,
|
||||||
squeeze = fluid.layers.fc(
|
num_channels,
|
||||||
input=pool,
|
num_filters,
|
||||||
size=num_channels // reduction_ratio,
|
stride,
|
||||||
|
cardinality,
|
||||||
|
reduction_ratio,
|
||||||
|
shortcut=True,
|
||||||
|
if_first=False,
|
||||||
|
name=None):
|
||||||
|
super(BottleneckBlock, self).__init__()
|
||||||
|
|
||||||
|
self.conv0 = ConvBNLayer(
|
||||||
|
num_channels=num_channels,
|
||||||
|
num_filters=num_filters,
|
||||||
|
filter_size=1,
|
||||||
act='relu',
|
act='relu',
|
||||||
param_attr=fluid.param_attr.ParamAttr(
|
name='conv' + name + '_x1')
|
||||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
self.conv1 = ConvBNLayer(
|
||||||
name=name + '_sqz_weights'),
|
num_channels=num_filters,
|
||||||
|
num_filters=num_filters,
|
||||||
|
filter_size=3,
|
||||||
|
groups=cardinality,
|
||||||
|
stride=stride,
|
||||||
|
act='relu',
|
||||||
|
name='conv' + name + '_x2')
|
||||||
|
self.conv2 = ConvBNLayer(
|
||||||
|
num_channels=num_filters,
|
||||||
|
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
|
||||||
|
filter_size=1,
|
||||||
|
act=None,
|
||||||
|
name='conv' + name + '_x3')
|
||||||
|
self.scale = SELayer(
|
||||||
|
num_channels=num_filters * 2 if cardinality == 32 else num_filters,
|
||||||
|
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
|
||||||
|
reduction_ratio=reduction_ratio,
|
||||||
|
name='fc' + name)
|
||||||
|
|
||||||
|
if not shortcut:
|
||||||
|
self.short = ConvBNLayer(
|
||||||
|
num_channels=num_channels,
|
||||||
|
num_filters=num_filters * 2
|
||||||
|
if cardinality == 32 else num_filters,
|
||||||
|
filter_size=1,
|
||||||
|
stride=stride,
|
||||||
|
name='conv' + name + '_prj')
|
||||||
|
|
||||||
|
self.shortcut = shortcut
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
y = self.conv0(inputs)
|
||||||
|
conv1 = self.conv1(y)
|
||||||
|
conv2 = self.conv2(conv1)
|
||||||
|
scale = self.scale(conv2)
|
||||||
|
|
||||||
|
if self.shortcut:
|
||||||
|
short = inputs
|
||||||
|
else:
|
||||||
|
short = self.short(inputs)
|
||||||
|
y = paddle.elementwise_add(x=short, y=scale, act='relu')
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class SELayer(nn.Layer):
|
||||||
|
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
|
||||||
|
super(SELayer, self).__init__()
|
||||||
|
|
||||||
|
self.pool2d_gap = AdaptiveAvgPool2d(1)
|
||||||
|
|
||||||
|
self._num_channels = num_channels
|
||||||
|
|
||||||
|
med_ch = int(num_channels / reduction_ratio)
|
||||||
|
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
||||||
|
self.squeeze = Linear(
|
||||||
|
num_channels,
|
||||||
|
med_ch,
|
||||||
|
weight_attr=ParamAttr(
|
||||||
|
initializer=Uniform(-stdv, stdv),
|
||||||
|
name=name + "_sqz_weights"),
|
||||||
bias_attr=ParamAttr(name=name + '_sqz_offset'))
|
bias_attr=ParamAttr(name=name + '_sqz_offset'))
|
||||||
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
|
self.relu = nn.ReLU()
|
||||||
excitation = fluid.layers.fc(
|
stdv = 1.0 / math.sqrt(med_ch * 1.0)
|
||||||
input=squeeze,
|
self.excitation = Linear(
|
||||||
size=num_channels,
|
med_ch,
|
||||||
act='sigmoid',
|
num_filters,
|
||||||
param_attr=fluid.param_attr.ParamAttr(
|
weight_attr=ParamAttr(
|
||||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
initializer=Uniform(-stdv, stdv),
|
||||||
name=name + '_exc_weights'),
|
name=name + "_exc_weights"),
|
||||||
bias_attr=ParamAttr(name=name + '_exc_offset'))
|
bias_attr=ParamAttr(name=name + '_exc_offset'))
|
||||||
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
|
self.sigmoid = nn.Sigmoid()
|
||||||
return scale
|
|
||||||
|
def forward(self, input):
|
||||||
|
pool = self.pool2d_gap(input)
|
||||||
|
pool = paddle.reshape(pool, shape=[-1, self._num_channels])
|
||||||
|
squeeze = self.squeeze(pool)
|
||||||
|
squeeze = self.relu(squeeze)
|
||||||
|
excitation = self.excitation(squeeze)
|
||||||
|
excitation = self.sigmoid(excitation)
|
||||||
|
excitation = paddle.reshape(
|
||||||
|
excitation, shape=[-1, self._num_channels, 1, 1])
|
||||||
|
out = input * excitation
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
def SE_ResNeXt50_32x4d():
|
class ResNeXt(nn.Layer):
|
||||||
model = SE_ResNeXt(layers=50)
|
def __init__(self, layers=50, class_dim=1000, cardinality=32):
|
||||||
|
super(ResNeXt, self).__init__()
|
||||||
|
|
||||||
|
self.layers = layers
|
||||||
|
self.cardinality = cardinality
|
||||||
|
self.reduction_ratio = 16
|
||||||
|
supported_layers = [50, 101, 152]
|
||||||
|
assert layers in supported_layers, \
|
||||||
|
"supported layers are {} but input layer is {}".format(
|
||||||
|
supported_layers, layers)
|
||||||
|
supported_cardinality = [32, 64]
|
||||||
|
assert cardinality in supported_cardinality, \
|
||||||
|
"supported cardinality is {} but input cardinality is {}" \
|
||||||
|
.format(supported_cardinality, cardinality)
|
||||||
|
if layers == 50:
|
||||||
|
depth = [3, 4, 6, 3]
|
||||||
|
elif layers == 101:
|
||||||
|
depth = [3, 4, 23, 3]
|
||||||
|
elif layers == 152:
|
||||||
|
depth = [3, 8, 36, 3]
|
||||||
|
num_channels = [64, 256, 512, 1024]
|
||||||
|
num_filters = [128, 256, 512,
|
||||||
|
1024] if cardinality == 32 else [256, 512, 1024, 2048]
|
||||||
|
if layers < 152:
|
||||||
|
self.conv = ConvBNLayer(
|
||||||
|
num_channels=3,
|
||||||
|
num_filters=64,
|
||||||
|
filter_size=7,
|
||||||
|
stride=2,
|
||||||
|
act='relu',
|
||||||
|
name="conv1")
|
||||||
|
else:
|
||||||
|
self.conv1_1 = ConvBNLayer(
|
||||||
|
num_channels=3,
|
||||||
|
num_filters=64,
|
||||||
|
filter_size=3,
|
||||||
|
stride=2,
|
||||||
|
act='relu',
|
||||||
|
name="conv1")
|
||||||
|
self.conv1_2 = ConvBNLayer(
|
||||||
|
num_channels=64,
|
||||||
|
num_filters=64,
|
||||||
|
filter_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv2")
|
||||||
|
self.conv1_3 = ConvBNLayer(
|
||||||
|
num_channels=64,
|
||||||
|
num_filters=128,
|
||||||
|
filter_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv3")
|
||||||
|
|
||||||
|
self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||||
|
|
||||||
|
self.block_list = []
|
||||||
|
n = 1 if layers == 50 or layers == 101 else 3
|
||||||
|
for block in range(len(depth)):
|
||||||
|
n += 1
|
||||||
|
shortcut = False
|
||||||
|
for i in range(depth[block]):
|
||||||
|
bottleneck_block = self.add_sublayer(
|
||||||
|
'bb_%d_%d' % (block, i),
|
||||||
|
BottleneckBlock(
|
||||||
|
num_channels=num_channels[block] if i == 0 else
|
||||||
|
num_filters[block] * int(64 // self.cardinality),
|
||||||
|
num_filters=num_filters[block],
|
||||||
|
stride=2 if i == 0 and block != 0 else 1,
|
||||||
|
cardinality=self.cardinality,
|
||||||
|
reduction_ratio=self.reduction_ratio,
|
||||||
|
shortcut=shortcut,
|
||||||
|
if_first=block == 0,
|
||||||
|
name=str(n) + '_' + str(i + 1)))
|
||||||
|
self.block_list.append(bottleneck_block)
|
||||||
|
shortcut = True
|
||||||
|
|
||||||
|
self.pool2d_avg = AdaptiveAvgPool2d(1)
|
||||||
|
|
||||||
|
self.pool2d_avg_channels = num_channels[-1] * 2
|
||||||
|
|
||||||
|
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
|
||||||
|
|
||||||
|
self.out = Linear(
|
||||||
|
self.pool2d_avg_channels,
|
||||||
|
class_dim,
|
||||||
|
weight_attr=ParamAttr(
|
||||||
|
initializer=Uniform(-stdv, stdv),
|
||||||
|
name="fc6_weights"),
|
||||||
|
bias_attr=ParamAttr(name="fc6_offset"))
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
if self.layers < 152:
|
||||||
|
y = self.conv(inputs)
|
||||||
|
else:
|
||||||
|
y = self.conv1_1(inputs)
|
||||||
|
y = self.conv1_2(y)
|
||||||
|
y = self.conv1_3(y)
|
||||||
|
y = self.pool2d_max(y)
|
||||||
|
|
||||||
|
for block in self.block_list:
|
||||||
|
y = block(y)
|
||||||
|
y = self.pool2d_avg(y)
|
||||||
|
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
|
||||||
|
y = self.out(y)
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def SE_ResNeXt50_32x4d(**args):
|
||||||
|
model = ResNeXt(layers=50, cardinality=32, **args)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def SE_ResNeXt101_32x4d():
|
def SE_ResNeXt101_32x4d(**args):
|
||||||
model = SE_ResNeXt(layers=101)
|
model = ResNeXt(layers=101, cardinality=32, **args)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def SE_ResNeXt152_32x4d():
|
def SE_ResNeXt152_64x4d(**args):
|
||||||
model = SE_ResNeXt(layers=152)
|
model = ResNeXt(layers=152, cardinality=64, **args)
|
||||||
return model
|
return model
|
||||||
|
|
Loading…
Reference in New Issue