mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
Update README_en.md
This commit is contained in:
parent
1accd03152
commit
b8093b8b51
490
README_en.md
490
README_en.md
@ -4,9 +4,9 @@
|
|||||||
|
|
||||||
## Introduction
|
## Introduction
|
||||||
|
|
||||||
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
|
PaddleClas is a image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
|
||||||
|
|
||||||
**Recent update**
|
**Recent updates**
|
||||||
|
|
||||||
- 2021.06.16 PaddleClas release/2.2.
|
- 2021.06.16 PaddleClas release/2.2.
|
||||||
- Add metric learning and vector search module.
|
- Add metric learning and vector search module.
|
||||||
@ -21,467 +21,97 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||||||
|
|
||||||
- [more](./docs/en/update_history_en.md)
|
- [more](./docs/en/update_history_en.md)
|
||||||
|
|
||||||
|
|
||||||
## Features
|
## Features
|
||||||
|
|
||||||
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 29 series of classification network structures and training configurations, 134 models' pretrained weights and their evaluation metrics.
|
- A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks.
|
||||||
|
Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.
|
||||||
|
|
||||||
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
|
- Rich library of pre-trained models: Provide a total of 164 ImageNet pre-trained models in 34 series, among which 6 selected series of models support fast structural modification.
|
||||||
|
|
||||||
- Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
|
- Comprehensive and easy-to-use feature learning components: 12 metric learning methods are integrated and can be combined and switched at will through configuration files.
|
||||||
|
|
||||||
- Pretrained model with 100,000 categories: Based on `ResNet50_vd` model, Baidu open sourced the `ResNet50_vd` pretrained model trained on a 100,000-category dataset. In some practical scenarios, the accuracy based on the pretrained weights can be increased by up to 30%.
|
- SSLD knowledge distillation: The 14 classification pre-training models generally improved their accuracy by more than 3%; among them, the ResNet50_vd model achieved a Top-1 accuracy of 84.0% on the Image-Net-1k dataset and the Res2Net200_vd pre-training model achieved a Top-1 accuracy of 85.1%.
|
||||||
|
|
||||||
- A variety of training modes, including multi-machine training, mixed precision training, etc.
|
- Data augmentation: Provide 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, etc. with detailed introduction, code replication and evaluation of effectiveness in a unified experimental environment.
|
||||||
|
|
||||||
- A variety of inference and deployment solutions, including TensorRT inference, Paddle-Lite inference, model service deployment, model quantification, Paddle Hub, etc.
|
|
||||||
|
|
||||||
- Support Linux, Windows, macOS and other systems.
|
|
||||||
|
|
||||||
|
|
||||||
## Community
|
|
||||||
|
|
||||||
* Scan the QR code below with your Wechat and send the message `分类` out, then you will be invited into the official technical exchange group.
|
|
||||||
|
|
||||||
|
## Image Recognition System Effect Demonstration
|
||||||
<div align="center">
|
<div align="center">
|
||||||
<img src="./docs/images/wx_group.jpeg" width = "200" height = "200" />
|
<img src="./docs/images/recognition.gif" width = "400" />
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
## Welcome to Join the Technical Exchange Group
|
||||||
|
|
||||||
|
* You can also scan the QR code below to join the PaddleClas WeChat group to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<img src="./docs/images/wx_group.png" width = "200" />
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
Quick experience of image recognition:[Link](./docs/zh_CN/tutorials/quick_start_recognition.md)
|
||||||
|
|
||||||
## Tutorials
|
## Tutorials
|
||||||
|
|
||||||
- [Installation](./docs/en/tutorials/install_en.md)
|
- [Quick Installatiopn](./docs/zh_CN/tutorials/install.md)
|
||||||
- [Quick start PaddleClas in 30 minutes](./docs/en/tutorials/quick_start_en.md)
|
- [Quick Start of Recognition](./docs/zh_CN/tutorials/quick_start_recognition.md)
|
||||||
- [Model introduction and model zoo](./docs/en/models/models_intro_en.md)
|
- Algorithms Introduction(Updating)
|
||||||
- [Model zoo overview](#Model_zoo_overview)
|
- [Backbone Network and Pre-trained Model Library](./docs/zh_CN/models/models_intro.md)
|
||||||
- [SSLD pretrained models](#SSLD_pretrained_series)
|
- [Mainbody Detection](./docs/zh_CN/application/object_detection.md)
|
||||||
- [ResNet and Vd series](#ResNet_and_Vd_series)
|
- Image Classification
|
||||||
- [Mobile series](#Mobile_series)
|
- [ImageNet Classification](./docs/zh_CN/tutorials/quick_start_professional.md)
|
||||||
- [SEResNeXt and Res2Net series](#SEResNeXt_and_Res2Net_series)
|
- 特征学习
|
||||||
- [DPN and DenseNet series](#DPN_and_DenseNet_series)
|
- [Product Recognition](./docs/zh_CN/application/product_recognition.md)
|
||||||
- [HRNet series](#HRNet_series)
|
- [Vehicle Recognition](./docs/zh_CN/application/vehicle_reid.md)
|
||||||
- [Inception series](#Inception_series)
|
- [Logo Recognition](./docs/zh_CN/application/logo_recognition.md)
|
||||||
- [EfficientNet and ResNeXt101_wsl series](#EfficientNet_and_ResNeXt101_wsl_series)
|
- [Animation Character Recognition](./docs/zh_CN/application/cartoon_character_recognition.md)
|
||||||
- [ResNeSt and RegNet series](#ResNeSt_and_RegNet_series)
|
- [Vector Retrieval](./deploy/vector_search/README.md)
|
||||||
- [ViT and DeiT series](#ViT_and_DeiT)
|
- Models Training/Evaluation
|
||||||
- [RepVGG series](#RepVGG)
|
- [Image Classification](./docs/zh_CN/tutorials/getting_started.md)
|
||||||
- [MixNet series](#MixNet)
|
- [Feature Learning](./docs/zh_CN/application/feature_learning.md)
|
||||||
- [ReXNet series](#ReXNet)
|
- Inference Model Prediction(Updating)
|
||||||
- [SwinTransformer series](#SwinTransformer)
|
- [Python Inference](./docs/zh_CN/tutorials/getting_started.md)
|
||||||
- [Others](#Others)
|
- [C++ Inference](./deploy/cpp_infer/readme.md)
|
||||||
- HS-ResNet: arxiv link: [https://arxiv.org/pdf/2010.07621.pdf](https://arxiv.org/pdf/2010.07621.pdf). Code and models are coming soon!
|
- [Hub Serving Deployment](./deploy/hubserving/readme.md)
|
||||||
- Model training/evaluation
|
- [Mobile Deployment](./deploy/lite/readme.md)
|
||||||
- [Data preparation](./docs/en/tutorials/data_en.md)
|
- [Inference Using whl](./docs/zh_CN/whl.md)
|
||||||
- [Model training and finetuning](./docs/en/tutorials/getting_started_en.md)
|
- Advanced Tutorial
|
||||||
- [Model evaluation](./docs/en/tutorials/getting_started_en.md)
|
- [Knowledge Distillation](./docs/zh_CN/advanced_tutorials/distillation/distillation.md)
|
||||||
- [Configuration details](./docs/en/tutorials/config_en.md)
|
- [Model Quantization](./docs/zh_CN/extension/paddle_quantization.md)
|
||||||
- Model prediction/inference
|
- [Data Augmentation](./docs/zh_CN/advanced_tutorials/image_augmentation/ImageAugment.md)
|
||||||
- [Prediction based on training engine](./docs/en/tutorials/getting_started_en.md)
|
- FAQ(Suspended Updates)
|
||||||
- [Python inference](./docs/en/tutorials/getting_started_en.md)
|
- [Image Classification FAQ](docs/zh_CN/faq.md)
|
||||||
- [C++ inference](./deploy/cpp_infer/readme_en.md)
|
|
||||||
- [Serving deployment](./deploy/hubserving/readme_en.md)
|
|
||||||
- [Mobile](./deploy/lite/readme_en.md)
|
|
||||||
- [Inference using whl ](./docs/en/whl_en.md)
|
|
||||||
- [Model Quantization and Compression](deploy/slim/quant/README_en.md)
|
|
||||||
- Advanced tutorials
|
|
||||||
- [Knowledge distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
|
|
||||||
- [Data augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
|
|
||||||
- [Multilabel classification](./docs/en/advanced_tutorials/multilabel/multilabel_en.md)
|
|
||||||
- Applications
|
|
||||||
- [Transfer learning](./docs/en/application/transfer_learning_en.md)
|
|
||||||
- [Pretrained model with 100,000 categories](./docs/en/application/transfer_learning_en.md)
|
|
||||||
- [Generic object detection](./docs/en/application/object_detection_en.md)
|
|
||||||
- FAQ
|
|
||||||
- [General image classification problems](./docs/en/faq_en.md)
|
|
||||||
- [PaddleClas FAQ](./docs/en/faq_en.md)
|
|
||||||
- [Competition support](./docs/en/competition_support_en.md)
|
|
||||||
- [License](#License)
|
- [License](#License)
|
||||||
- [Contribution](#Contribution)
|
- [Contribution](#Contribution)
|
||||||
|
|
||||||
|
|
||||||
<a name="Model_zoo_overview"></a>
|
## Introduction to Image Recognition Systems
|
||||||
### Model zoo overview
|
|
||||||
|
|
||||||
Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.
|
<a name="Introduction to Image Recognition Systems"></a>
|
||||||
|
<div align="center">
|
||||||
|
<img src="./docs/images/structure.png" width = "400" />
|
||||||
|
</div>
|
||||||
|
|
||||||
* CPU evaluation environment is based on Snapdragon 855 (SD855).
|
Image recognition can be divided into three steps:
|
||||||
* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).
|
- (1)Identify region proposal for target objects through a detection model;
|
||||||
|
- (2)Extract features for each region proposal;
|
||||||
|
- (3)Search features in the retrieval database and output results;
|
||||||
Curves of accuracy to the inference time of common server-side models are shown as follows.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
|
|
||||||
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
<a name="SSLD_pretrained_series"></a>
|
|
||||||
### SSLD pretrained models
|
|
||||||
Accuracy and inference time of the prtrained models based on SSLD distillation are as follows. More detailed information can be refered to [SSLD distillation tutorial](./docs/en/advanced_tutorials/distillation/distillation_en.md).
|
|
||||||
|
|
||||||
* Server-side distillation pretrained models
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
|
|
||||||
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd_<br>ssld | 0.824 | 0.791 | 0.033 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd_<br>ssld_v2 | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) |
|
|
||||||
| ResNet101_vd_<br>ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) |
|
|
||||||
| Res2Net50_vd_<br>26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
|
|
||||||
| Res2Net101_vd_<br>26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) |
|
|
||||||
| Res2Net200_vd_<br>26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
|
|
||||||
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) |
|
|
||||||
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 34.435 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) |
|
|
||||||
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 57.83 | 128.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
* Mobile-side distillation pretrained models
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model size(M) | Download Address |
|
|
||||||
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
|
|
||||||
| MobileNetV1_<br>ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_small_<br>x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
|
|
||||||
| GhostNet_<br>x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
* Note: `Reference Top-1 Acc` means accuracy of pretrained models which are trained on ImageNet1k dataset.
|
|
||||||
|
|
||||||
|
|
||||||
<a name="ResNet_and_Vd_series"></a>
|
|
||||||
### ResNet and Vd series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to [ResNet and Vd series tutorial](./docs/en/models/ResNet_and_vd_en.md).
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
|
|
||||||
| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams) |
|
|
||||||
| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams) |
|
|
||||||
| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams) |
|
|
||||||
| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams) |
|
|
||||||
| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) |
|
|
||||||
| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams) |
|
|
||||||
| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd_v2 | 0.7984 | 0.9493 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams) |
|
|
||||||
| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams) |
|
|
||||||
| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams) |
|
|
||||||
| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams) |
|
|
||||||
| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams) |
|
|
||||||
| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd_<br>ssld | 0.8239 | 0.9610 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) |
|
|
||||||
| ResNet50_vd_<br>ssld_v2 | 0.8300 | 0.9640 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) |
|
|
||||||
| ResNet101_vd_<br>ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="Mobile_series"></a>
|
|
||||||
### Mobile series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/Mobile_en.md).
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address |
|
|
||||||
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
|
|
||||||
| MobileNetV1_<br>x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams) |
|
|
||||||
| MobileNetV1_<br>x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams) |
|
|
||||||
| MobileNetV1_<br>x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams) |
|
|
||||||
| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams) |
|
|
||||||
| MobileNetV1_<br>ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams) |
|
|
||||||
| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) |
|
|
||||||
| MobileNetV2_<br>ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_<br>large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
|
|
||||||
| MobileNetV3_small_<br>x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams) |
|
|
||||||
| ShuffleNetV2_<br>swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams) |
|
|
||||||
| GhostNet_<br>x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams) |
|
|
||||||
| GhostNet_<br>x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams) |
|
|
||||||
| GhostNet_<br>x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams) |
|
|
||||||
| GhostNet_<br>x1_3_ssld | 0.7938 | 0.9449 | 19.9825 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="SEResNeXt_and_Res2Net_series"></a>
|
|
||||||
### SEResNeXt and Res2Net series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to [SEResNext and_Res2Net series tutorial](./docs/en/models/SEResNext_and_Res2Net_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
|
|
||||||
| Res2Net50_<br>26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams) |
|
|
||||||
| Res2Net50_vd_<br>26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams) |
|
|
||||||
| Res2Net50_<br>14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams) |
|
|
||||||
| Res2Net101_vd_<br>26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams) |
|
|
||||||
| Res2Net200_vd_<br>26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams) |
|
|
||||||
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
|
|
||||||
| ResNeXt50_<br>32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt50_vd_<br>32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt50_<br>64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt50_vd_<br>64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_<br>32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_vd_<br>32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_<br>64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_vd_<br>64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt152_<br>32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt152_vd_<br>32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt152_<br>64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams) |
|
|
||||||
| ResNeXt152_vd_<br>64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams) |
|
|
||||||
| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams) |
|
|
||||||
| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams) |
|
|
||||||
| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams) |
|
|
||||||
| SE_ResNeXt50_<br>32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams) |
|
|
||||||
| SE_ResNeXt50_vd_<br>32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams) |
|
|
||||||
| SE_ResNeXt101_<br>32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 | 15.02 | 46.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) |
|
|
||||||
| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="DPN_and_DenseNet_series"></a>
|
|
||||||
### DPN and DenseNet series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to [DPN and DenseNet series tutorial](./docs/en/models/DPN_DenseNet_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
|
|
||||||
| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) |
|
|
||||||
| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) |
|
|
||||||
| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) |
|
|
||||||
| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) |
|
|
||||||
| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) |
|
|
||||||
| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 4.03 | 10.78 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams) |
|
|
||||||
| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 12.54 | 36.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams) |
|
|
||||||
| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 22.22 | 58.46 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams) |
|
|
||||||
| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 35.06 | 82.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) |
|
|
||||||
| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 30.51 | 75.36 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) |
|
|
||||||
|
|
||||||
<a name="HRNet_series"></a>
|
|
||||||
### HRNet series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/HRNet_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
|
|
||||||
| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) |
|
|
||||||
| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) |
|
|
||||||
| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) |
|
|
||||||
| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams) |
|
|
||||||
| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 | 57.83 | 128.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="Inception_series"></a>
|
|
||||||
### Inception series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to [Inception series tutorial](./docs/en/models/Inception_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
|
|
||||||
| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 2.88 | 8.46 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) |
|
|
||||||
| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams) |
|
|
||||||
| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 18.16 | 26.73 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) |
|
|
||||||
| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams) |
|
|
||||||
| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 27.37 | 39.52 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) |
|
|
||||||
| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams) |
|
|
||||||
| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 11.46 | 23.83 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams) |
|
|
||||||
| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>
|
|
||||||
### EfficientNet and ResNeXt101_wsl series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to [EfficientNet and ResNeXt101_wsl series tutorial](./docs/en/models/EfficientNet_and_ResNeXt101_wsl_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
|
|
||||||
| ResNeXt101_<br>32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 | 29.14 | 78.44 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_<br>32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 | 57.55 | 152.66 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_<br>32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 | 115.17 | 303.11 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams) |
|
|
||||||
| ResNeXt101_<br>32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 173.58 | 456.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams) |
|
|
||||||
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 354.23 | 456.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) |
|
|
||||||
| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.72 | 5.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams) |
|
|
||||||
| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 1.27 | 7.52 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams) |
|
|
||||||
| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.85 | 8.81 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams) |
|
|
||||||
| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 3.43 | 11.84 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams) |
|
|
||||||
| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 8.29 | 18.76 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams) |
|
|
||||||
| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 19.51 | 29.61 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams) |
|
|
||||||
| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 36.27 | 42 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams) |
|
|
||||||
| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 72.35 | 64.92 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) |
|
|
||||||
| EfficientNetB0_<br>small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="ResNeSt_and_RegNet_series"></a>
|
|
||||||
### ResNeSt and RegNet series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to [ResNeSt and RegNet series tutorial](./docs/en/models/ResNeSt_RegNet_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
|
|
||||||
| ResNeSt50_<br>fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 | 8.68 | 26.3 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
|
|
||||||
| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 | 10.78 | 27.5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) |
|
|
||||||
| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="ViT_and_DeiT"></a>
|
|
||||||
### ViT and DeiT series
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of ViT and DeiT series models are shown as follows. More detailed information can be refered to [ViT and DeiT series tutorial](./docs/en/models/ViT_and_DeiT_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
|
|
||||||
| ViT_small_<br/>patch16_224 | 0.7769 | 0.9342 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
|
|
||||||
| ViT_base_<br/>patch16_224 | 0.8195 | 0.9617 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
|
|
||||||
| ViT_base_<br/>patch16_384 | 0.8414 | 0.9717 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
|
|
||||||
| ViT_base_<br/>patch32_384 | 0.8176 | 0.9613 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
|
|
||||||
| ViT_large_<br/>patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
|
|
||||||
| ViT_large_<br/>patch16_384 | 0.8513 | 0.9736 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
|
|
||||||
| ViT_large_<br/>patch32_384 | 0.8153 | 0.9608 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
|
|
||||||
| | | | | | | | |
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
|
|
||||||
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | - | - | | 5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
|
|
||||||
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | - | - | | 6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
|
|
||||||
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
|
|
||||||
| | | | | | | | |
|
|
||||||
|
|
||||||
|
|
||||||
<a name="RepVGG_series"></a>
|
|
||||||
|
|
||||||
### RepVGG
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of RepVGG series models are shown as follows. More detailed information can be refered to [RepVGG series tutorial](./docs/en/models/RepVGG_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
|
|
||||||
| RepVGG_A0 | 0.7131 | 0.9016 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) |
|
|
||||||
| RepVGG_A1 | 0.7380 | 0.9146 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) |
|
|
||||||
| RepVGG_A2 | 0.7571 | 0.9264 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) |
|
|
||||||
| RepVGG_B0 | 0.7450 | 0.9213 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) |
|
|
||||||
| RepVGG_B1 | 0.7773 | 0.9385 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) |
|
|
||||||
| RepVGG_B2 | 0.7813 | 0.9410 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) |
|
|
||||||
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) |
|
|
||||||
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) |
|
|
||||||
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) |
|
|
||||||
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) |
|
|
||||||
|
|
||||||
<a name="MixNet"></a>
|
|
||||||
|
|
||||||
### MixNet
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of MixNet series models are shown as follows. More detailed information can be refered to [MixNet series tutorial](./docs/en/models/MixNet_en.md).
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(M) | Params(M) | Download Address |
|
|
||||||
| -------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
|
|
||||||
| MixNet_S | 0.7628 | 0.9299 | | | 252.977 | 4.167 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) |
|
|
||||||
| MixNet_M | 0.7767 | 0.9364 | | | 357.119 | 5.065 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) |
|
|
||||||
| MixNet_L | 0.7860 | 0.9437 | | | 579.017 | 7.384 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) |
|
|
||||||
|
|
||||||
<a name="ReXNet"></a>
|
|
||||||
|
|
||||||
### ReXNet
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of ReXNet series models are shown as follows. More detailed information can be refered to [ReXNet series tutorial](./docs/en/models/ReXNet_en.md).
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
|
|
||||||
| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.838 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) |
|
|
||||||
| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.683 | 7.611 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) |
|
|
||||||
| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.900 | 9.791 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) |
|
|
||||||
| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.561 | 16.449 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) |
|
|
||||||
| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.445 | 34.833 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) |
|
|
||||||
|
|
||||||
<a name="SwinTransformer"></a>
|
|
||||||
|
|
||||||
### SwinTransformer
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of SwinTransformer series models are shown as follows. More detailed information can be refered to [SwinTransformer series tutorial](./docs/en/models/SwinTransformer_en.md).
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
|
|
||||||
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.5 | 28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.7 | 50 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.4 | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 47.1 | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 0.8487 | 0.9746 | | | 15.4 | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 0.8642 | 0.9807 | | | 47.1 | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 0.8596 | 0.9783 | | | 34.5 | 197 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) |
|
|
||||||
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 0.8719 | 0.9823 | | | 103.9 | 197 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) |
|
|
||||||
|
|
||||||
[1]: Based on imagenet22k dataset pre-training, and then in imagenet1k dataset transfer learning.
|
|
||||||
|
|
||||||
<a name="Others"></a>
|
|
||||||
|
|
||||||
### Others
|
|
||||||
|
|
||||||
Accuracy and inference time metrics of AlexNet, SqueezeNet series, VGG series and DarkNet53 models are shown as follows. More detailed information can be refered to [Others](./docs/en/models/Others_en.md).
|
|
||||||
|
|
||||||
|
|
||||||
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|
|
||||||
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
|
|
||||||
| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) |
|
|
||||||
| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 1.550 | 1.240 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) |
|
|
||||||
| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.690 | 1.230 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) |
|
|
||||||
| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 15.090 | 132.850 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams) |
|
|
||||||
| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 22.480 | 133.030 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams) |
|
|
||||||
| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 30.810 | 138.340 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams) |
|
|
||||||
| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 39.130 | 143.650 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams) |
|
|
||||||
| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) |
|
|
||||||
|
|
||||||
|
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
|
||||||
|
|
||||||
<a name="License"></a>
|
<a name="License"></a>
|
||||||
## License
|
|
||||||
|
|
||||||
PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>
|
## License
|
||||||
|
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
|
||||||
|
|
||||||
|
|
||||||
<a name="Contribution"></a>
|
<a name="Contribution"></a>
|
||||||
## Contribution
|
## Contribution
|
||||||
|
|
||||||
Contributions are highly welcomed and we would really appreciate your feedback!!
|
Contributions are highly welcomed and we would really appreciate your feedback!!
|
||||||
|
|
||||||
|
|
||||||
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
|
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
|
||||||
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
|
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
|
||||||
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
|
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
|
||||||
|
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user