mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
support set shuffle by config
This commit is contained in:
parent
d7014129f1
commit
b83da15d27
@ -15,6 +15,7 @@ class MultiScaleSampler(Sampler):
|
||||
first_bs,
|
||||
divided_factor=32,
|
||||
is_training=True,
|
||||
shuffle=True,
|
||||
seed=None):
|
||||
"""
|
||||
multi scale samper
|
||||
@ -23,7 +24,7 @@ class MultiScaleSampler(Sampler):
|
||||
scales(list): several scales for image resolution
|
||||
first_bs(int): batch size for the first scale in scales
|
||||
divided_factor(int): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
|
||||
is_training(boolean): mode
|
||||
is_training(boolean): mode
|
||||
"""
|
||||
# min. and max. spatial dimensions
|
||||
self.data_source = data_source
|
||||
@ -47,7 +48,7 @@ class MultiScaleSampler(Sampler):
|
||||
math.ceil(self.n_data_samples * 1.0 / num_replicas))
|
||||
img_indices = [idx for idx in range(self.n_data_samples)]
|
||||
|
||||
self.shuffle = False
|
||||
self.shuffle = shuffle
|
||||
if is_training:
|
||||
# compute the spatial dimensions and corresponding batch size
|
||||
# ImageNet models down-sample images by a factor of 32.
|
||||
@ -66,7 +67,6 @@ class MultiScaleSampler(Sampler):
|
||||
batch_size = int(max(1, (base_elements / (h * w))))
|
||||
img_batch_pairs.append((w, h, batch_size))
|
||||
self.img_batch_pairs = img_batch_pairs
|
||||
self.shuffle = True
|
||||
else:
|
||||
self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user