remove unused import
parent
34edfa055a
commit
b857342a3c
|
@ -1,42 +1,184 @@
|
|||
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||
#you may not use this file except in compliance with the License.
|
||||
#You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
#Unless required by applicable law or agreed to in writing, software
|
||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
||||
__all__ = [
|
||||
"DenseNet", "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
|
||||
"DenseNet264"
|
||||
"DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264"
|
||||
]
|
||||
|
||||
|
||||
class DenseNet():
|
||||
def __init__(self, layers=121):
|
||||
self.layers = layers
|
||||
class BNACConvLayer(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
pad=0,
|
||||
groups=1,
|
||||
act="relu",
|
||||
name=None):
|
||||
super(BNACConvLayer, self).__init__()
|
||||
|
||||
self._batch_norm = BatchNorm(
|
||||
num_channels,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=name + '_bn_scale'),
|
||||
bias_attr=ParamAttr(name + '_bn_offset'),
|
||||
moving_mean_name=name + '_bn_mean',
|
||||
moving_variance_name=name + '_bn_variance')
|
||||
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
groups=groups,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
|
||||
def forward(self, input):
|
||||
y = self._batch_norm(input)
|
||||
y = self._conv(y)
|
||||
return y
|
||||
|
||||
|
||||
class DenseLayer(fluid.dygraph.Layer):
|
||||
def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
|
||||
super(DenseLayer, self).__init__()
|
||||
self.dropout = dropout
|
||||
|
||||
self.bn_ac_func1 = BNACConvLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=bn_size * growth_rate,
|
||||
filter_size=1,
|
||||
pad=0,
|
||||
stride=1,
|
||||
name=name + "_x1")
|
||||
|
||||
self.bn_ac_func2 = BNACConvLayer(
|
||||
num_channels=bn_size * growth_rate,
|
||||
num_filters=growth_rate,
|
||||
filter_size=3,
|
||||
pad=1,
|
||||
stride=1,
|
||||
name=name + "_x2")
|
||||
|
||||
if dropout:
|
||||
self.dropout_func = Dropout(p=dropout)
|
||||
|
||||
def forward(self, input):
|
||||
conv = self.bn_ac_func1(input)
|
||||
conv = self.bn_ac_func2(conv)
|
||||
if self.dropout:
|
||||
conv = self.dropout_func(conv)
|
||||
conv = fluid.layers.concat([input, conv], axis=1)
|
||||
return conv
|
||||
|
||||
|
||||
class DenseBlock(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_layers,
|
||||
bn_size,
|
||||
growth_rate,
|
||||
dropout,
|
||||
name=None):
|
||||
super(DenseBlock, self).__init__()
|
||||
self.dropout = dropout
|
||||
|
||||
self.dense_layer_func = []
|
||||
|
||||
pre_channel = num_channels
|
||||
for layer in range(num_layers):
|
||||
self.dense_layer_func.append(
|
||||
self.add_sublayer(
|
||||
"{}_{}".format(name, layer + 1),
|
||||
DenseLayer(
|
||||
num_channels=pre_channel,
|
||||
growth_rate=growth_rate,
|
||||
bn_size=bn_size,
|
||||
dropout=dropout,
|
||||
name=name + '_' + str(layer + 1))))
|
||||
pre_channel = pre_channel + growth_rate
|
||||
|
||||
def forward(self, input):
|
||||
conv = input
|
||||
for func in self.dense_layer_func:
|
||||
conv = func(conv)
|
||||
return conv
|
||||
|
||||
|
||||
class TransitionLayer(fluid.dygraph.Layer):
|
||||
def __init__(self, num_channels, num_output_features, name=None):
|
||||
super(TransitionLayer, self).__init__()
|
||||
|
||||
self.conv_ac_func = BNACConvLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_output_features,
|
||||
filter_size=1,
|
||||
pad=0,
|
||||
stride=1,
|
||||
name=name)
|
||||
|
||||
self.pool2d_avg = Pool2D(pool_size=2, pool_stride=2, pool_type='avg')
|
||||
|
||||
def forward(self, input):
|
||||
y = self.conv_ac_func(input)
|
||||
y = self.pool2d_avg(y)
|
||||
return y
|
||||
|
||||
|
||||
class ConvBNLayer(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
pad=0,
|
||||
groups=1,
|
||||
act="relu",
|
||||
name=None):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
groups=groups,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
self._batch_norm = BatchNorm(
|
||||
num_filters,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=name + '_bn_scale'),
|
||||
bias_attr=ParamAttr(name + '_bn_offset'),
|
||||
moving_mean_name=name + '_bn_mean',
|
||||
moving_variance_name=name + '_bn_variance')
|
||||
|
||||
def forward(self, input):
|
||||
y = self._conv(input)
|
||||
y = self._batch_norm(y)
|
||||
return y
|
||||
|
||||
|
||||
class DenseNet(fluid.dygraph.Layer):
|
||||
def __init__(self, layers=60, bn_size=4, dropout=0, class_dim=1000):
|
||||
super(DenseNet, self).__init__()
|
||||
|
||||
def net(self, input, bn_size=4, dropout=0, class_dim=1000):
|
||||
layers = self.layers
|
||||
supported_layers = [121, 161, 169, 201, 264]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
||||
"supported layers are {} but input layer is {}".format(
|
||||
supported_layers, layers)
|
||||
densenet_spec = {
|
||||
121: (64, 32, [6, 12, 24, 16]),
|
||||
161: (96, 48, [6, 12, 36, 24]),
|
||||
|
@ -44,139 +186,86 @@ class DenseNet():
|
|||
201: (64, 32, [6, 12, 48, 32]),
|
||||
264: (64, 32, [6, 12, 64, 48])
|
||||
}
|
||||
|
||||
num_init_features, growth_rate, block_config = densenet_spec[layers]
|
||||
conv = fluid.layers.conv2d(
|
||||
input=input,
|
||||
|
||||
self.conv1_func = ConvBNLayer(
|
||||
num_channels=3,
|
||||
num_filters=num_init_features,
|
||||
filter_size=7,
|
||||
stride=2,
|
||||
padding=3,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name="conv1_weights"),
|
||||
bias_attr=False)
|
||||
conv = fluid.layers.batch_norm(
|
||||
input=conv,
|
||||
pad=3,
|
||||
act='relu',
|
||||
param_attr=ParamAttr(name='conv1_bn_scale'),
|
||||
bias_attr=ParamAttr(name='conv1_bn_offset'),
|
||||
moving_mean_name='conv1_bn_mean',
|
||||
moving_variance_name='conv1_bn_variance')
|
||||
conv = fluid.layers.pool2d(
|
||||
input=conv,
|
||||
pool_size=3,
|
||||
pool_stride=2,
|
||||
pool_padding=1,
|
||||
pool_type='max')
|
||||
name="conv1")
|
||||
|
||||
self.pool2d_max = Pool2D(
|
||||
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
||||
|
||||
self.block_config = block_config
|
||||
|
||||
self.dense_block_func_list = []
|
||||
self.transition_func_list = []
|
||||
pre_num_channels = num_init_features
|
||||
num_features = num_init_features
|
||||
for i, num_layers in enumerate(block_config):
|
||||
conv = self.make_dense_block(
|
||||
conv,
|
||||
num_layers,
|
||||
bn_size,
|
||||
growth_rate,
|
||||
dropout,
|
||||
name='conv' + str(i + 2))
|
||||
self.dense_block_func_list.append(
|
||||
self.add_sublayer(
|
||||
"db_conv_{}".format(i + 2),
|
||||
DenseBlock(
|
||||
num_channels=pre_num_channels,
|
||||
num_layers=num_layers,
|
||||
bn_size=bn_size,
|
||||
growth_rate=growth_rate,
|
||||
dropout=dropout,
|
||||
name='conv' + str(i + 2))))
|
||||
|
||||
num_features = num_features + num_layers * growth_rate
|
||||
pre_num_channels = num_features
|
||||
|
||||
if i != len(block_config) - 1:
|
||||
conv = self.make_transition(
|
||||
conv, num_features // 2, name='conv' + str(i + 2) + '_blk')
|
||||
self.transition_func_list.append(
|
||||
self.add_sublayer(
|
||||
"tr_conv{}_blk".format(i + 2),
|
||||
TransitionLayer(
|
||||
num_channels=pre_num_channels,
|
||||
num_output_features=num_features // 2,
|
||||
name='conv' + str(i + 2) + "_blk")))
|
||||
pre_num_channels = num_features // 2
|
||||
num_features = num_features // 2
|
||||
conv = fluid.layers.batch_norm(
|
||||
input=conv,
|
||||
act='relu',
|
||||
|
||||
self.batch_norm = BatchNorm(
|
||||
num_features,
|
||||
act="relu",
|
||||
param_attr=ParamAttr(name='conv5_blk_bn_scale'),
|
||||
bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
|
||||
moving_mean_name='conv5_blk_bn_mean',
|
||||
moving_variance_name='conv5_blk_bn_variance')
|
||||
conv = fluid.layers.pool2d(
|
||||
input=conv, pool_type='avg', global_pooling=True)
|
||||
stdv = 1.0 / math.sqrt(conv.shape[1] * 1.0)
|
||||
out = fluid.layers.fc(
|
||||
input=conv,
|
||||
size=class_dim,
|
||||
param_attr=fluid.param_attr.ParamAttr(
|
||||
|
||||
self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
|
||||
|
||||
stdv = 1.0 / math.sqrt(num_features * 1.0)
|
||||
|
||||
self.out = Linear(
|
||||
num_features,
|
||||
class_dim,
|
||||
param_attr=ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||||
name="fc_weights"),
|
||||
bias_attr=ParamAttr(name='fc_offset'))
|
||||
return out
|
||||
bias_attr=ParamAttr(name="fc_offset"))
|
||||
|
||||
def make_transition(self, input, num_output_features, name=None):
|
||||
bn_ac = fluid.layers.batch_norm(
|
||||
input,
|
||||
act='relu',
|
||||
param_attr=ParamAttr(name=name + '_bn_scale'),
|
||||
bias_attr=ParamAttr(name + '_bn_offset'),
|
||||
moving_mean_name=name + '_bn_mean',
|
||||
moving_variance_name=name + '_bn_variance')
|
||||
def forward(self, input):
|
||||
conv = self.conv1_func(input)
|
||||
conv = self.pool2d_max(conv)
|
||||
|
||||
bn_ac_conv = fluid.layers.conv2d(
|
||||
input=bn_ac,
|
||||
num_filters=num_output_features,
|
||||
filter_size=1,
|
||||
stride=1,
|
||||
act=None,
|
||||
bias_attr=False,
|
||||
param_attr=ParamAttr(name=name + "_weights"))
|
||||
pool = fluid.layers.pool2d(
|
||||
input=bn_ac_conv, pool_size=2, pool_stride=2, pool_type='avg')
|
||||
return pool
|
||||
for i, num_layers in enumerate(self.block_config):
|
||||
conv = self.dense_block_func_list[i](conv)
|
||||
if i != len(self.block_config) - 1:
|
||||
conv = self.transition_func_list[i](conv)
|
||||
|
||||
def make_dense_block(self,
|
||||
input,
|
||||
num_layers,
|
||||
bn_size,
|
||||
growth_rate,
|
||||
dropout,
|
||||
name=None):
|
||||
conv = input
|
||||
for layer in range(num_layers):
|
||||
conv = self.make_dense_layer(
|
||||
conv,
|
||||
growth_rate,
|
||||
bn_size,
|
||||
dropout,
|
||||
name=name + '_' + str(layer + 1))
|
||||
return conv
|
||||
|
||||
def make_dense_layer(self, input, growth_rate, bn_size, dropout,
|
||||
name=None):
|
||||
bn_ac = fluid.layers.batch_norm(
|
||||
input,
|
||||
act='relu',
|
||||
param_attr=ParamAttr(name=name + '_x1_bn_scale'),
|
||||
bias_attr=ParamAttr(name + '_x1_bn_offset'),
|
||||
moving_mean_name=name + '_x1_bn_mean',
|
||||
moving_variance_name=name + '_x1_bn_variance')
|
||||
bn_ac_conv = fluid.layers.conv2d(
|
||||
input=bn_ac,
|
||||
num_filters=bn_size * growth_rate,
|
||||
filter_size=1,
|
||||
stride=1,
|
||||
act=None,
|
||||
bias_attr=False,
|
||||
param_attr=ParamAttr(name=name + "_x1_weights"))
|
||||
bn_ac = fluid.layers.batch_norm(
|
||||
bn_ac_conv,
|
||||
act='relu',
|
||||
param_attr=ParamAttr(name=name + '_x2_bn_scale'),
|
||||
bias_attr=ParamAttr(name + '_x2_bn_offset'),
|
||||
moving_mean_name=name + '_x2_bn_mean',
|
||||
moving_variance_name=name + '_x2_bn_variance')
|
||||
bn_ac_conv = fluid.layers.conv2d(
|
||||
input=bn_ac,
|
||||
num_filters=growth_rate,
|
||||
filter_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
act=None,
|
||||
bias_attr=False,
|
||||
param_attr=ParamAttr(name=name + "_x2_weights"))
|
||||
if dropout:
|
||||
bn_ac_conv = fluid.layers.dropout(
|
||||
x=bn_ac_conv, dropout_prob=dropout)
|
||||
bn_ac_conv = fluid.layers.concat([input, bn_ac_conv], axis=1)
|
||||
return bn_ac_conv
|
||||
conv = self.batch_norm(conv)
|
||||
y = self.pool2d_avg(conv)
|
||||
y = fluid.layers.reshape(y, shape=[0, -1])
|
||||
y = self.out(y)
|
||||
return y
|
||||
|
||||
|
||||
def DenseNet121():
|
||||
|
|
|
@ -1,18 +1,12 @@
|
|||
import numpy as np
|
||||
import argparse
|
||||
import ast
|
||||
import sys
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
|
||||
from paddle.fluid import framework
|
||||
|
||||
import math
|
||||
import sys
|
||||
import time
|
||||
|
||||
__all__ = [
|
||||
"DPN",
|
||||
|
|
|
@ -1,18 +1,11 @@
|
|||
import numpy as np
|
||||
import argparse
|
||||
import ast
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
|
||||
from paddle.fluid import framework
|
||||
|
||||
import math
|
||||
import sys
|
||||
import time
|
||||
|
||||
__all__ = [
|
||||
"HRNet_W18_C",
|
||||
|
|
Loading…
Reference in New Issue