Create __init__.py
parent
d0edde7a94
commit
bb4c2c6df0
|
@ -0,0 +1,55 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
class CircleMargin(nn.Layer):
|
||||
def __init__(self, embedding_size,
|
||||
class_num,
|
||||
margin,
|
||||
scale):
|
||||
super(CircleSoftmax, self).__init__()
|
||||
self.scale = scale
|
||||
self.margin = margin
|
||||
self.embedding_size = embedding_size
|
||||
self.class_num = class_num
|
||||
|
||||
weight_attr = paddle.ParamAttr(initializer = paddle.nn.initializer.XavierNormal())
|
||||
self.fc0 = paddle.nn.Linear(self.embedding_size, self.class_num, weight_attr=weight_attr)
|
||||
|
||||
def forward(self, input, label):
|
||||
feat_norm = paddle.sqrt(paddle.sum(paddle.square(input), axis=1, keepdim=True))
|
||||
input = paddle.divide(input, feat_norm)
|
||||
|
||||
weight = self.fc0.weight
|
||||
weight_norm = paddle.sqrt(paddle.sum(paddle.square(weight), axis=0, keepdim=True))
|
||||
weight = paddle.divide(weight, weight_norm)
|
||||
|
||||
logits = paddle.matmul(input, weight)
|
||||
|
||||
alpha_p = paddle.clip(-logits.detach() + 1 + self.margin, min=0.)
|
||||
alpha_n = paddle.clip(logits.detach() + self.margin, min=0.)
|
||||
delta_p = 1 - self.margin
|
||||
delta_n = self.margin
|
||||
index = paddle.fluid.layers.where(label != -1).reshape([-1])
|
||||
m_hot = F.one_hot(label.reshape([-1]), num_classes=logits.shape[1])
|
||||
logits_p = alpha_p * (logits - delta_p)
|
||||
logits_n = alpha_n * (logits - delta_n)
|
||||
pre_logits = logits_p * m_hot + logits_n * (1 - m_hot)
|
||||
pre_logits = self.scale * pre_logits
|
||||
|
||||
return pre_logits
|
Loading…
Reference in New Issue