parent
3d5cde1aed
commit
bcaf6a8528
|
@ -7,6 +7,7 @@
|
|||
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
|
||||
|
||||
**Recent update**
|
||||
- 2020.12.16 Add support for TensorRT when using cpp inference to obain more obvious acceleration.
|
||||
- 2020.12.06 Add `SE_HRNet_W64_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.75%.
|
||||
- 2020.11.23 Add `GhostNet_x1_3_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.38%.
|
||||
- 2020.11.09 Add `InceptionV3` architecture and pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.1%.
|
||||
|
@ -15,7 +16,6 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
- 2020.10.10 Add cpp inference demo and improve FAQ tutorial.
|
||||
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
|
||||
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
|
||||
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
|
||||
- [more](./docs/en/update_history_en.md)
|
||||
|
||||
|
||||
|
@ -76,7 +76,7 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
- [Prediction based on training engine](./docs/en/tutorials/getting_started_en.md)
|
||||
- [Python inference](./docs/en/tutorials/getting_started_en.md)
|
||||
- [C++ inference](./deploy/cpp_infer/readme_en.md)
|
||||
- [Serving deployment](./docs/en/extension/paddle_serving_en.md)
|
||||
- [Serving deployment](./deploy/hubserving/readme_en.md)
|
||||
- [Mobile](./deploy/lite/readme_en.md)
|
||||
- [Model Quantization and Compression](docs/en/extension/paddle_quantization_en.md)
|
||||
- Advanced tutorials
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
|
||||
|
||||
**近期更新**
|
||||
- 2020.12.16 添加对cpp预测的tensorRT支持,预测加速更明显。
|
||||
- 2020.12.06 添加`SE_HRNet_W64_C_ssld`模型,在ImageNet-1k上Top-1 Acc可达84.75%。
|
||||
- 2020.11.23 添加`GhostNet_x1_3_ssld `模型,在ImageNet-1k上Top-1 Acc可达79.38%。
|
||||
- 2020.11.18 添加图像分类[常见问题2020第一季第三期](./docs/zh_CN/faq_series/faq_2020_s1.md) 5个新问题,并且计划以后每周会更新,欢迎大家持续关注。
|
||||
|
@ -17,7 +18,6 @@
|
|||
- 2020.10.10 添加cpp inference demo,完善`FAQ 30问`教程。
|
||||
- 2020.09.17 添加 `HRNet_W48_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.62%;添加 `ResNet34_vd_ssld `模型,在ImageNet-1k上Top-1 Acc可达79.72%。
|
||||
- 2020.09.07 添加 `HRNet_W18_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达81.16%;添加 `MobileNetV3_small_x0_35_ssld `模型,在ImageNet-1k上Top-1 Acc可达55.55%。
|
||||
- 2020.07.14 添加 `Res2Net200_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达85.13%;添加 `Fix_ResNet50_vd_ssld_v2 `模型,在ImageNet-1k上Top-1 Acc可达84.0%。
|
||||
- [more](./docs/zh_CN/update_history.md)
|
||||
|
||||
|
||||
|
@ -78,7 +78,7 @@
|
|||
- [基于训练引擎预测推理](./docs/zh_CN/tutorials/getting_started.md)
|
||||
- [基于Python预测引擎预测推理](./docs/zh_CN/tutorials/getting_started.md)
|
||||
- [基于C++预测引擎预测推理](./deploy/cpp_infer/readme.md)
|
||||
- [服务化部署](./docs/zh_CN/extension/paddle_serving.md)
|
||||
- [服务化部署](./deploy/hubserving/readme.md)
|
||||
- [端侧部署](./deploy/lite/readme.md)
|
||||
- [模型量化压缩](docs/zh_CN/extension/paddle_quantization.md)
|
||||
- 高阶使用
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 42 KiB |
|
@ -164,6 +164,7 @@ OPENCV_DIR=your_opencv_dir
|
|||
LIB_DIR=your_paddle_inference_dir
|
||||
CUDA_LIB_DIR=your_cuda_lib_dir
|
||||
CUDNN_LIB_DIR=your_cudnn_lib_dir
|
||||
TENSORRT_DIR=your_tensorrt_lib_dir
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
|
@ -176,6 +177,7 @@ cmake .. \
|
|||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DWITH_TENSORRT=OFF \
|
||||
-DTENSORRT_DIR=${TENSORRT_DIR} \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
@ -193,6 +195,8 @@ make -j
|
|||
|
||||
* `CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`。
|
||||
|
||||
* `TENSORRT_DIR`是tensorrt库文件地址,在dokcer中为`/usr/local/TensorRT6-cuda10.0-cudnn7/`,TensorRT需要结合GPU使用。
|
||||
|
||||
在执行上述命令,编译完成之后,会在当前路径下生成`build`文件夹,其中生成一个名为`clas_system`的可执行文件。
|
||||
|
||||
|
||||
|
@ -203,6 +207,8 @@ make -j
|
|||
* gpu_mem:显存;
|
||||
* cpu_math_library_num_threads:底层科学计算库所用线程的数量;
|
||||
* use_mkldnn:是否使用MKLDNN加速;
|
||||
* use_tensorrt: 是否使用tensorRT进行加速;
|
||||
* use_fp16:是否使用半精度浮点数进行计算,该选项仅在use_tensorrt为true时有效;
|
||||
* cls_model_path:预测模型结构文件路径;
|
||||
* cls_params_path:预测模型参数文件路径;
|
||||
* resize_short_size:预处理时图像缩放大小;
|
||||
|
|
|
@ -172,6 +172,7 @@ OPENCV_DIR=your_opencv_dir
|
|||
LIB_DIR=your_paddle_inference_dir
|
||||
CUDA_LIB_DIR=your_cuda_lib_dir
|
||||
CUDNN_LIB_DIR=your_cudnn_lib_dir
|
||||
TENSORRT_DIR=your_tensorrt_lib_dir
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
|
@ -180,10 +181,11 @@ cd ${BUILD_DIR}
|
|||
cmake .. \
|
||||
-DPADDLE_LIB=${LIB_DIR} \
|
||||
-DWITH_MKL=ON \
|
||||
-DDEMO_NAME=ocr_system \
|
||||
-DDEMO_NAME=clas_system \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DWITH_TENSORRT=OFF \
|
||||
-DTENSORRT_DIR=${TENSORRT_DIR} \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
@ -201,11 +203,29 @@ In the above parameters of command:
|
|||
|
||||
* `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
|
||||
|
||||
* `TENSORRT_DIR` is the tensorrt library file path,in dokcer it is `/usr/local/TensorRT6-cuda10.0-cudnn7/`,TensorRT is just enabled for GPU.
|
||||
|
||||
After the compilation is completed, an executable file named `clas_system` will be generated in the `build` folder.
|
||||
|
||||
|
||||
### Run the demo
|
||||
* First, please modify the `tools/config.txt` and `tools/run.sh`. Then execute the following command to complete the classification of an image.
|
||||
* First, please modify the `tools/config.txt` and `tools/run.sh`.
|
||||
|
||||
* Some key words in `tools/config.txt` is as follows.
|
||||
* use_gpu: Whether to use GPU.
|
||||
* gpu_id: GPU id.
|
||||
* gpu_mem:GPU memory.
|
||||
* cpu_math_library_num_threads:Number of thread for math library acceleration.
|
||||
* use_mkldnn:Whether to use mkldnn.
|
||||
* use_tensorrt: Whether to use tensorRT.
|
||||
* use_fp16:Whether to use Float16 (half precision), it is just enabled when use_tensorrt is set as 1.
|
||||
* cls_model_path: Model path of inference model.
|
||||
* cls_params_path: Params path of inference model.
|
||||
* resize_short_size:Short side length of the image after resize.
|
||||
* crop_size:Image size after center crop.
|
||||
|
||||
|
||||
* Then execute the following command to complete the classification of an image.
|
||||
|
||||
```shell
|
||||
sh tools/run.sh
|
||||
|
|
|
@ -1,14 +1,17 @@
|
|||
# Release Notes
|
||||
|
||||
- 2020.12.16
|
||||
* Add support for TensorRT when using cpp inference to obain more obvious acceleration.
|
||||
|
||||
- 2020.12.06
|
||||
* Add `SE_HRNet_W64_C_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.75%.
|
||||
|
||||
- 2020.11.23
|
||||
* Add `GhostNet_x1_3_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.38%.
|
||||
|
||||
|
||||
- 2020.11.09
|
||||
* Add `InceptionV3` architecture and pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.1%.
|
||||
|
||||
|
||||
* 2020.10.20
|
||||
* Add `Res2Net50_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.1%.
|
||||
* Add `Res2Net101_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.9%.
|
||||
|
|
|
@ -1,14 +1,17 @@
|
|||
# 更新日志
|
||||
|
||||
- 2020.12.16
|
||||
* 添加对cpp预测的tensorRT支持,预测加速更明显。
|
||||
|
||||
- 2020.12.06
|
||||
* 添加SE_HRNet_W64_C_ssld模型,在ImageNet上Top-1 Acc可达0.8475。
|
||||
|
||||
|
||||
- 2020.11.23
|
||||
* 添加GhostNet_x1_3_ssld模型,在ImageNet上Top-1 Acc可达0.7938。
|
||||
|
||||
- 2020.11.09
|
||||
* 添加InceptionV3结构和模型,在ImageNet上Top-1 Acc可达0.791。
|
||||
|
||||
|
||||
- 2020.10.20
|
||||
* 添加Res2Net50_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达0.831;添加Res2Net101_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达0.839。
|
||||
|
||||
|
|
Loading…
Reference in New Issue