diff --git a/docs/zh_CN/training/advanced/knowledge_distillation.md b/docs/zh_CN/training/advanced/knowledge_distillation.md
index 24b48528b..cbddf3485 100644
--- a/docs/zh_CN/training/advanced/knowledge_distillation.md
+++ b/docs/zh_CN/training/advanced/knowledge_distillation.md
@@ -583,76 +583,6 @@ Loss:
weight: 1.0
```
-<<<<<<< HEAD
-=======
-
-
-#### 1.2.8 WSL
-
-##### 1.2.8.1 WSL 算法介绍
-
-论文信息:
-
-
-> [Rethinking Soft Labels For Knowledge Distillation: A Bias-variance Tradeoff Perspective](https://arxiv.org/abs/2102.0650)
->
-> Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, Qian Zhang
->
-> ICLR, 2021
-
-WSL (Weighted Soft Labels) 损失函数根据教师模型与学生模型关于真值标签的 CE Loss 比值,对每个样本的 KD Loss 分别赋予权重。若学生模型相对教师模型在某个样本上预测结果更好,则对该样本赋予较小的权重。该方法简单、有效,使各个样本的权重可自适应调节,提升了蒸馏精度。
-
-在ImageNet1k公开数据集上,效果如下所示。
-
-| 策略 | 骨干网络 | 配置文件 | Top-1 acc | 下载链接 |
-| --- | --- | --- | --- | --- |
-| baseline | ResNet18 | [ResNet18.yaml](../../../../ppcls/configs/ImageNet/ResNet/ResNet18.yaml) | 70.8% | - |
-| WSL | ResNet18 | [resnet34_distill_resnet18_wsl.yaml](../../../../ppcls/configs/ImageNet/Distillation/resnet34_distill_resnet18_wsl.yaml) | 72.23%(**+1.43%**) | - |
-
-
-##### 1.2.8.2 WSL 配置
-
-WSL 配置如下所示。在模型构建Arch字段中,需要同时定义学生模型与教师模型,教师模型固定参数,且需要加载预训练模型。在损失函数Loss字段中,需要定义`DistillationGTCELoss`(学生与真值标签之间的CE loss)以及`DistillationWSLLoss`(学生与教师之间的WSL loss),作为训练的损失函数。
-
-
-```yaml
-# model architecture
-Arch:
- name: "DistillationModel"
- # if not null, its lengths should be same as models
- pretrained_list:
- # if not null, its lengths should be same as models
- freeze_params_list:
- - True
- - False
- models:
- - Teacher:
- name: ResNet34
- pretrained: True
-
- - Student:
- name: ResNet18
- pretrained: False
-
- infer_model_name: "Student"
-
-
-# loss function config for traing/eval process
-Loss:
- Train:
- - DistillationGTCELoss:
- weight: 1.0
- model_names: ["Student"]
- - DistillationWSLLoss:
- weight: 2.5
- model_name_pairs: [["Student", "Teacher"]]
- temperature: 2
- Eval:
- - CELoss:
- weight: 1.0
-```
-
->>>>>>> 1f6f4797 (docs: refactor & fix link & rename)
## 2. 模型训练、评估和预测