Create pairwisecosface.py
parent
625b64bce9
commit
c4a787596e
|
@ -0,0 +1,55 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
|
||||
class PairwiseCosface(nn.Layer):
|
||||
def __init__(self, margin, gamma):
|
||||
super(PairwiseCosface, self).__init__()
|
||||
self.margin = margin
|
||||
self.gamma = gamma
|
||||
|
||||
def forward(self, embedding, targets):
|
||||
if isinstance(embedding, dict):
|
||||
embedding = embedding['features']
|
||||
# Normalize embedding features
|
||||
embedding = F.normalize(embedding, axis=1)
|
||||
dist_mat = paddle.matmul(embedding, embedding, transpose_y=True)
|
||||
|
||||
N = dist_mat.shape[0]
|
||||
is_pos = targets.reshape([N,1]).expand([N,N]).equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float')
|
||||
is_neg = targets.reshape([N,1]).expand([N,N]).not_equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float')
|
||||
|
||||
# Mask scores related to itself
|
||||
is_pos = is_pos - paddle.eye(N, N)
|
||||
|
||||
s_p = dist_mat * is_pos
|
||||
s_n = dist_mat * is_neg
|
||||
|
||||
logit_p = -self.gamma * s_p + (-99999999.) * (1 - is_pos)
|
||||
logit_n = self.gamma * (s_n + self.margin) + (-99999999.) * (1 - is_neg)
|
||||
|
||||
loss = F.softplus(paddle.logsumexp(logit_p, axis=1) + paddle.logsumexp(logit_n, axis=1)).mean()
|
||||
|
||||
return {"PairwiseCosface": loss}
|
||||
|
||||
|
Loading…
Reference in New Issue