diff --git a/docs/zh_CN/algorithm_introduction/ImageNet_models.md b/docs/zh_CN/algorithm_introduction/ImageNet_models.md index 09d44194a..6d05078c9 100644 --- a/docs/zh_CN/algorithm_introduction/ImageNet_models.md +++ b/docs/zh_CN/algorithm_introduction/ImageNet_models.md @@ -39,7 +39,7 @@ 基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下: * Arm CPU 的评估环境基于骁龙 855(SD855)。 * Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。 -* GPU 评估环境基于 T4 机器,在 FP32+TensorRT 配置下运行 500 次测得(去除前 10 次的 warmup 时间)。 +* GPU 评估环境基于 V100 机器,在 FP32+TensorRT 配置下运行 2100 次测得(去除前 100 次的 warmup 时间)。 * FLOPs 与 Params 通过 `paddle.flops()` 计算得到(PaddlePaddle 版本为 2.2) 常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。 @@ -62,40 +62,40 @@ ### 2.1 服务器端知识蒸馏模型 -| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------| -| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) | -| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | -| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | -| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 4.28 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | -| Res2Net101_vd_
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 8.35 | 45.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | -| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | -| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 17.34 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | -| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | +| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------| +| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld.tar)   | +| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) | +| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) | +| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 3.59 | 6.35 | 9.50 | 4.28 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar) | +| Res2Net101_vd_
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 6.34 | 11.02 | 16.13 | 8.35 | 45.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar) | +| Res2Net200_vd_
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 11.45 | 19.77 | 28.81 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) | +| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) | +| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) | +| SE_HRNet_W64_C_ssld | 0.848 | - | - | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) | ### 2.2 移动端知识蒸馏模型 -| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | SD855 time(ms)
bs=1 | FLOPs(M) | Params(M) | 模型大小(M) | 下载地址 | -|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------| -| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) | -| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | -| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | -| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | -| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | -| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | +| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | SD855 time(ms)
bs=1, thread=1 | SD855 time(ms)
bs=1, thread=2 | SD855 time(ms)
bs=1, thread=4 | FLOPs(M) | Params(M) | 模型大小(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| +| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 30.24 | 17.86 | 10.30 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) | +| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 20.74 | 12.71 | 8.10 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) | +| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) | +| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 16.55 | 10.09 | 6.84 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) | +| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) | +| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.16 | 12.25 | 9.40 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) | ### 2.3 Intel CPU 端知识蒸馏模型 -| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 下载地址 | -|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------| -| PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams) | -| PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams) | -| PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906.49 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams) | +| 模型 | Top-1 Acc | Reference
Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|-----------------------------------| +| PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_ssld_infer.tar) | +| PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_ssld_infer.tar) | +| PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906.49 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_ssld_infer.tar) | @@ -108,16 +108,16 @@ PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 下载地址 | -|:--:|:--:|:--:|:--:|:--:|:--:|:--:| -| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18.25 | 1.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | -| PPLCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29.46 | 1.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | -| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | -| PPLCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 98.82 | 2.37 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | -| PPLCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | -| PPLCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 341.86 | 4.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | -| PPLCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | -| PPLCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)
bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|:--:|:--:|:--:|:--:|----|----|----|:--:| +| PPLCNet_x0_25 |0.5186 | 0.7565 | 1.61785 | 18.25 | 1.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) | +| PPLCNet_x0_35 |0.5809 | 0.8083 | 2.11344 | 29.46 | 1.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) | +| PPLCNet_x0_5 |0.6314 | 0.8466 | 2.72974 | 47.28 | 1.89 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) | +| PPLCNet_x0_75 |0.6818 | 0.8830 | 4.51216 | 98.82 | 2.37 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) | +| PPLCNet_x1_0 |0.7132 | 0.9003 | 6.49276 | 160.81 | 2.96 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) | +| PPLCNet_x1_5 |0.7371 | 0.9153 | 12.2601 | 341.86 | 4.52 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) | +| PPLCNet_x2_0 |0.7518 | 0.9227 | 20.1667 | 590 | 6.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) | +| PPLCNet_x2_5 |0.7660 | 0.9300 | 29.595 | 906 | 9.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) | @@ -125,23 +125,23 @@ PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该 ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 及其 Vd 系列模型文档](../models/ResNet_and_vd.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------| -| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 1.83 | 11.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams) | -| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 2.07 | 11.72 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams) | -| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 3.68 | 21.81 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams) | -| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams) | -| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) | -| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 4.11 | 25.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams) | -| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) | -| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams) | -| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 7.83 | 44.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams) | -| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams) | -| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 11.56 | 60.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams) | -| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 11.80 | 60.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams) | -| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 15.30 | 74.93 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams) | -| ResNet50_vd_
ssld | 0.8300 | 0.9640 | 3.53131 | 8.09057 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | -| ResNet101_vd_
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------| +| ResNet18 | 0.7098 | 0.8992 | 1.22 | 2.19 | 3.63 | 1.83 | 11.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar) | +| ResNet18_vd | 0.7226 | 0.9080 | 1.26 | 2.28 | 3.89 | 2.07 | 11.72 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar) | +| ResNet34 | 0.7457 | 0.9214 | 1.97 | 3.25 | 5.70 | 3.68 | 21.81 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar) | +| ResNet34_vd | 0.7598 | 0.9298 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar) | +| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.00 | 3.28 | 5.84 | 3.93 | 21.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar) | +| ResNet50 | 0.7650 | 0.9300 | 2.54 | 4.79 | 7.40 | 4.11 | 25.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar) | +| ResNet50_vc | 0.7835 | 0.9403 | 2.57 | 4.83 | 7.52 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar) | +| ResNet50_vd | 0.7912 | 0.9444 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar) | +| ResNet101 | 0.7756 | 0.9364 | 4.37 | 8.18 | 12.38 | 7.83 | 44.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar) | +| ResNet101_vd | 0.8017 | 0.9497 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar) | +| ResNet152 | 0.7826 | 0.9396 | 6.05 | 11.41 | 17.33 | 11.56 | 60.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar) | +| ResNet152_vd | 0.8059 | 0.9530 | 6.11 | 11.51 | 17.59 | 11.80 | 60.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar) | +| ResNet200_vd | 0.8093 | 0.9533 | 7.70 | 14.57 | 22.16 | 15.30 | 74.93 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar) | +| ResNet50_vd_
ssld | 0.8300 | 0.9640 | 2.60 | 4.86 | 7.63 | 4.35 | 25.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) | +| ResNet101_vd_
ssld | 0.8373 | 0.9669 | 4.43 | 8.25 | 12.60 | 8.08 | 44.67 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) | @@ -149,48 +149,48 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关 移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](../models/Mobile.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
bs=1 | FLOPs(M) | Params(M) | 模型大小(M) | 下载地址 | -|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------| -| MobileNetV1_
x0_25 | 0.5143 | 0.7546 | 3.21985 | 43.56 | 0.48 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams) | -| MobileNetV1_
x0_5 | 0.6352 | 0.8473 | 9.579599 | 154.57 | 1.34 | 5.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams) | -| MobileNetV1_
x0_75 | 0.6881 | 0.8823 | 19.436399 | 333.00 | 2.60 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams) | -| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams) | -| MobileNetV1_
ssld | 0.7789 | 0.9394 | 32.523048 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) | -| MobileNetV2_
x0_25 | 0.5321 | 0.7652 | 3.79925 | 34.18 | 1.53 | 6.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) | -| MobileNetV2_
x0_5 | 0.6503 | 0.8572 | 8.7021 | 99.48 | 1.98 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) | -| MobileNetV2_
x0_75 | 0.6983 | 0.8901 | 15.531351 | 197.37 | 2.65 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams) | -| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams) | -| MobileNetV2_
x1_5 | 0.7412 | 0.9167 | 45.623848 | 702.35 | 6.90 | 26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams) | -| MobileNetV2_
x2_0 | 0.7523 | 0.9258 | 74.291649 | 1217.25 | 11.33 | 43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) | -| MobileNetV2_
ssld | 0.7674 | 0.9339 | 23.317699 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | -| MobileNetV3_
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 362.70 | 7.47 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams) | -| MobileNetV3_
large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams) | -| MobileNetV3_
large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 151.70 | 3.93 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams) | -| MobileNetV3_
large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 71.83 | 2.69 | 11 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams) | -| MobileNetV3_
large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 40.90 | 2.11 | 8.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams) | -| MobileNetV3_
small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 100.07 | 3.64 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams) | -| MobileNetV3_
small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams) | -| MobileNetV3_
small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 46.02 | 2.38 | 9.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) | -| MobileNetV3_
small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 22.60 | 1.91 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) | -| MobileNetV3_
small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) | -| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | -| MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | -| MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | -| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 148.86 | 2.29 | 9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) | -| ShuffleNetV2_
x0_25 | 0.4990 | 0.7379 | 2.329 | 18.95 | 0.61 | 2.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) | -| ShuffleNetV2_
x0_33 | 0.5373 | 0.7705 | 2.64335 | 24.04 | 0.65 | 2.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) | -| ShuffleNetV2_
x0_5 | 0.6032 | 0.8226 | 4.2613 | 42.58 | 1.37 | 5.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams) | -| ShuffleNetV2_
x1_5 | 0.7163 | 0.9015 | 19.3522 | 301.35 | 3.53 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams) | -| ShuffleNetV2_
x2_0 | 0.7315 | 0.9120 | 34.770149 | 571.70 | 7.40 | 28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams) | -| ShuffleNetV2_
swish | 0.7003 | 0.8917 | 16.023151 | 148.86 | 2.29 | 9.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams) | -| GhostNet_
x0_5 | 0.6688 | 0.8695 | 5.7143 | 46.15 | 2.60 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams) | -| GhostNet_
x1_0 | 0.7402 | 0.9165 | 13.5587 | 148.78 | 5.21 | 20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams) | -| GhostNet_
x1_3 | 0.7579 | 0.9254 | 19.9825 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams) | -| GhostNet_
x1_3_ssld | 0.7938 | 0.9449 | 19.9825 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | -| ESNet_x0_25 | 62.48 | 83.46 || 30.85 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) | -| ESNet_x0_5 | 68.82 | 88.04 || 67.31 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams) | -| ESNet_x0_75 | 72.24 | 90.45 || 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams) | -| ESNet_x1_0 | 73.92 | 91.40 || 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | SD855 time(ms)
bs=1, thread=1 | SD855 time(ms)
bs=1, thread=2 | SD855 time(ms)
bs=1, thread=4 | FLOPs(M) | Params(M) | 模型大小(M) | 预训练模型下载地址 | inference模型下载地址 | +|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------| +| MobileNetV1_
x0_25 | 0.5143 | 0.7546 | 2.88 | 1.82 | 1.26 | 43.56 | 0.48 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_25_infer.tar) | +| MobileNetV1_
x0_5 | 0.6352 | 0.8473 | 8.74 | 5.26 | 3.09 | 154.57 | 1.34 | 5.2 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_5_infer.tar) | +| MobileNetV1_
x0_75 | 0.6881 | 0.8823 | 17.84 | 10.61 | 6.21 | 333.00 | 2.60 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_75_infer.tar) | +| MobileNetV1 | 0.7099 | 0.8968 | 30.24 | 17.86 | 10.30 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar) | +| MobileNetV1_
ssld | 0.7789 | 0.9394 | 30.24 | 17.86 | 10.30 | 578.88 | 4.25 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) | +| MobileNetV2_
x0_25 | 0.5321 | 0.7652 | 3.46 | 2.51 | 2.03 | 34.18 | 1.53 | 6.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_25_infer.tar) | +| MobileNetV2_
x0_5 | 0.6503 | 0.8572 | 7.69 | 4.92 | 3.57 | 99.48 | 1.98 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_5_infer.tar) | +| MobileNetV2_
x0_75 | 0.6983 | 0.8901 | 13.69 | 8.60 | 5.82 | 197.37 | 2.65 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_75_infer.tar) | +| MobileNetV2 | 0.7215 | 0.9065 | 20.74 | 12.71 | 8.10 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_infer.tar) | +| MobileNetV2_
x1_5 | 0.7412 | 0.9167 | 40.79 | 24.49 | 15.50 | 702.35 | 6.90 | 26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x1_5_infer.tar) | +| MobileNetV2_
x2_0 | 0.7523 | 0.9258 | 67.50 | 40.03 | 25.55 | 1217.25 | 11.33 | 43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x2_0_infer.tar) | +| MobileNetV2_
ssld | 0.7674 | 0.9339 | 20.74 | 12.71 | 8.10 | 327.84 | 3.54 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) | +| MobileNetV3_
large_x1_25 | 0.7641 | 0.9295 | 24.52 | 14.76 | 9.89 | 362.70 | 7.47 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_25_infer.tar) | +| MobileNetV3_
large_x1_0 | 0.7532 | 0.9231 | 16.55 | 10.09 | 6.84 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar) | +| MobileNetV3_
large_x0_75 | 0.7314 | 0.9108 | 11.53 | 7.06 | 4.94 | 151.70 | 3.93 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_75_infer.tar) | +| MobileNetV3_
large_x0_5 | 0.6924 | 0.8852 | 6.50 | 4.22 | 3.15 | 71.83 | 2.69 | 11 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_5_infer.tar) | +| MobileNetV3_
large_x0_35 | 0.6432 | 0.8546 | 4.43 | 3.11 | 2.41 | 40.90 | 2.11 | 8.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_35_infer.tar) | +| MobileNetV3_
small_x1_25 | 0.7067 | 0.8951 | 7.88 | 4.91 | 3.45 | 100.07 | 3.64 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_25_infer.tar) | +| MobileNetV3_
small_x1_0 | 0.6824 | 0.8806 | 5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_infer.tar) | +| MobileNetV3_
small_x0_75 | 0.6602 | 0.8633 | 4.50 | 2.96 | 2.19 | 46.02 | 2.38 | 9.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar) | +| MobileNetV3_
small_x0_5 | 0.5921 | 0.8152 | 2.89 | 2.04 | 1.62 | 22.60 | 1.91 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar) | +| MobileNetV3_
small_x0_35 | 0.5303 | 0.7637 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar) | +| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) | +| MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 16.55 | 10.09 | 6.84 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) | +| MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) | +| ShuffleNetV2 | 0.6880 | 0.8845 | 9.72 | 5.97 | 4.13 | 148.86 | 2.29 | 9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar) | +| ShuffleNetV2_
x0_25 | 0.4990 | 0.7379 | 1.94 | 1.53 | 1.43 | 18.95 | 0.61 | 2.7 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_25_infer.tar) | +| ShuffleNetV2_
x0_33 | 0.5373 | 0.7705 | 2.23 | 1.70 | 1.79 | 24.04 | 0.65 | 2.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_33_infer.tar) | +| ShuffleNetV2_
x0_5 | 0.6032 | 0.8226 | 3.67 | 2.63 | 2.06 | 42.58 | 1.37 | 5.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_5_infer.tar) | +| ShuffleNetV2_
x1_5 | 0.7163 | 0.9015 | 17.21 | 10.56 | 6.81 | 301.35 | 3.53 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_5_infer.tar) | +| ShuffleNetV2_
x2_0 | 0.7315 | 0.9120 | 31.21 | 18.98 | 11.65 | 571.70 | 7.40 | 28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x2_0_infer.tar) | +| ShuffleNetV2_
swish | 0.7003 | 0.8917 | 31.21 | 9.06 | 5.74 | 148.86 | 2.29 | 9.1 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_swish_infer.tar) | +| GhostNet_
x0_5 | 0.6688 | 0.8695 | 5.28 | 3.95 | 3.29 | 46.15 | 2.60 | 10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x0_5_infer.tar) | +| GhostNet_
x1_0 | 0.7402 | 0.9165 | 12.89 | 8.66 | 6.72 | 148.78 | 5.21 | 20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_0_infer.tar) | +| GhostNet_
x1_3 | 0.7579 | 0.9254 | 19.16 | 12.25 | 9.40 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_infer.tar) | +| GhostNet_
x1_3_ssld | 0.7938 | 0.9449 | 19.16 | 12.25 | 9.40 | 236.89 | 7.38 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) | +| ESNet_x0_25 | 0.6248 | 0.8346 |4.12|2.97|2.51| 30.85 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_25_infer.tar) | +| ESNet_x0_5 | 0.6882 | 0.8804 |6.45|4.42|3.35| 67.31 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_5_infer.tar) | +| ESNet_x0_75 | 0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar) | +| ESNet_x1_0 | 0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar) | @@ -199,33 +199,33 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关 SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt 与 Res2Net 系列模型文档](../models/SEResNext_and_Res2Net.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------| -| Res2Net50_
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 4.28 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams) | -| Res2Net50_vd_
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 4.52 | 25.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams) | -| Res2Net50_
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 4.20 | 25.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams) | -| Res2Net101_vd_
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 8.35 | 45.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | -| ResNeXt50_
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 4.26 | 25.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams) | -| ResNeXt50_vd_
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 4.50 | 25.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams) | -| ResNeXt50_
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 8.02 | 45.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams) | -| ResNeXt50_vd_
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 8.26 | 45.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams) | -| ResNeXt101_
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 8.01 | 44.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams) | -| ResNeXt101_vd_
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 8.25 | 44.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams) | -| ResNeXt101_
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 15.52 | 83.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams) | -| ResNeXt101_vd_
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 15.76 | 83.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams) | -| ResNeXt152_
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 11.76 | 60.15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams) | -| ResNeXt152_vd_
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 12.01 | 60.17 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams) | -| ResNeXt152_
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 23.03 | 115.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams) | -| ResNeXt152_vd_
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 23.27 | 115.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams) | -| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 2.07 | 11.81 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams) | -| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 3.93 | 22.00 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams) | -| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 4.36 | 28.16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams) | -| SE_ResNeXt50_
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 4.27 | 27.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams) | -| SE_ResNeXt50_vd_
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 5.64 | 27.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams) | -| SE_ResNeXt101_
32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 | 8.03 | 49.09 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) | -| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 24.45 | 122.03 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| +| Res2Net50_
26w_4s | 0.7933 | 0.9457 | 3.52 | 6.23 | 9.30 | 4.28 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar) | +| Res2Net50_vd_
26w_4s | 0.7975 | 0.9491 | 3.59 | 6.35 | 9.50 | 4.52 | 25.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar) | +| Res2Net50_
14w_8s | 0.7946 | 0.9470 | 4.39 | 7.21 | 10.38 | 4.20 | 25.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar) | +| Res2Net101_vd_
26w_4s | 0.8064 | 0.9522 | 6.34 | 11.02 | 16.13 | 8.35 | 45.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar) | +| Res2Net200_vd_
26w_4s | 0.8121 | 0.9571 | 11.45 | 19.77 | 28.81 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar) | +| Res2Net200_vd_
26w_4s_ssld | 0.8513 | 0.9742 | 11.45 | 19.77 | 28.81 | 15.77 | 76.44 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) | +| ResNeXt50_
32x4d | 0.7775 | 0.9382 | 5.07 | 8.49 | 12.02 | 4.26 | 25.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar) | +| ResNeXt50_vd_
32x4d | 0.7956 | 0.9462 | 5.29 | 8.68 | 12.33 | 4.50 | 25.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar) | +| ResNeXt50_
64x4d | 0.7843 | 0.9413 | 9.39 | 13.97 | 20.56 | 8.02 | 45.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar) | +| ResNeXt50_vd_
64x4d | 0.8012 | 0.9486 | 9.75 | 14.14 | 20.84 | 8.26 | 45.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar) | +| ResNeXt101_
32x4d | 0.7865 | 0.9419 | 11.34 | 16.78 | 22.80 | 8.01 | 44.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar) | +| ResNeXt101_vd_
32x4d | 0.8033 | 0.9512 | 11.36 | 17.01 | 23.07 | 8.25 | 44.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar) | +| ResNeXt101_
64x4d | 0.7835 | 0.9452 | 21.57 | 28.08 | 39.49 | 15.52 | 83.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar) | +| ResNeXt101_vd_
64x4d | 0.8078 | 0.9520 | 21.57 | 28.22 | 39.70 | 15.76 | 83.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar) | +| ResNeXt152_
32x4d | 0.7898 | 0.9433 | 17.14 | 25.11 | 33.79 | 11.76 | 60.15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar) | +| ResNeXt152_vd_
32x4d | 0.8072 | 0.9520 | 16.99 | 25.29 | 33.85 | 12.01 | 60.17 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar) | +| ResNeXt152_
64x4d | 0.7951 | 0.9471 | 33.07 | 42.05 | 59.13 | 23.03 | 115.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar) | +| ResNeXt152_vd_
64x4d | 0.8108 | 0.9534 | 33.30 | 42.41 | 59.42 | 23.27 | 115.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar) | +| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.48 | 2.70 | 4.32 | 2.07 | 11.81 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar) | +| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.42 | 3.69 | 6.29 | 3.93 | 22.00 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar) | +| SE_ResNet50_vd | 0.7952 | 0.9475 | 3.11 | 5.99 | 9.34 | 4.36 | 28.16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar) | +| SE_ResNeXt50_
32x4d | 0.7844 | 0.9396 | 6.39 | 11.01 | 14.94 | 4.27 | 27.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar) | +| SE_ResNeXt50_vd_
32x4d | 0.8024 | 0.9489 | 7.04 | 11.57 | 16.01 | 5.64 | 27.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar) | +| SE_ResNeXt101_
32x4d | 0.7939 | 0.9443 | 13.31 | 21.85 | 28.77 | 8.03 | 49.09 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar) | +| SENet154_vd | 0.8140 | 0.9548 | 34.83 | 51.22 | 69.74 | 24.45 | 122.03 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar) | @@ -234,18 +234,18 @@ SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更 DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 与 DenseNet 系列模型文档](../models/DPN_DenseNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------| -| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 2.87 | 8.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | -| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 7.79 | 28.90 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | -| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 3.40 | 14.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | -| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 4.34 | 20.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | -| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 5.82 | 33.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | -| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 2.35 | 12.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams) | -| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 6.54 | 37.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams) | -| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 11.728 | 61.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams) | -| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 18.38 | 87.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) | -| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 16.09 | 79.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------| +| DenseNet121 | 0.7566 | 0.9258 | 3.40 | 6.94 | 9.17 | 2.87 | 8.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar) | +| DenseNet161 | 0.7857 | 0.9414 | 7.06 | 14.37 | 19.55 | 7.79 | 28.90 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar) | +| DenseNet169 | 0.7681 | 0.9331 | 5.00 | 10.29 | 12.84 | 3.40 | 14.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar) | +| DenseNet201 | 0.7763 | 0.9366 | 6.38 | 13.72 | 17.17 | 4.34 | 20.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar) | +| DenseNet264 | 0.7796 | 0.9385 | 9.34 | 20.95 | 25.41 | 5.82 | 33.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar) | +| DPN68 | 0.7678 | 0.9343 | 8.18 | 11.40 | 14.82 | 2.35 | 12.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar) | +| DPN92 | 0.7985 | 0.9480 | 12.48 | 20.04 | 25.10 | 6.54 | 37.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar) | +| DPN98 | 0.8059 | 0.9510 | 14.70 | 25.55 | 35.12 | 11.728 | 61.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar) | +| DPN107 | 0.8089 | 0.9532 | 19.46 | 35.62 | 50.22 | 18.38 | 87.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar) | +| DPN131 | 0.8070 | 0.9514 | 19.64 | 34.60 | 47.42 | 16.09 | 79.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar) | @@ -256,18 +256,18 @@ DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关 HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](../models/HRNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------| -| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) | -| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | -| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 8.15 | 37.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) | -| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 8.97 | 41.30 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) | -| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 12.74 | 57.64 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) | -| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 14.94 | 67.16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) | -| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) | -| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | -| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 28.97 | 128.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | -| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------| +| HRNet_W18_C | 0.7692 | 0.9339 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar) | +| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 6.66 | 8.94 | 11.95 | 4.32 | 21.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) | +| HRNet_W30_C | 0.7804 | 0.9402 | 8.61 | 11.40 | 15.23 | 8.15 | 37.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar) | +| HRNet_W32_C | 0.7828 | 0.9424 | 8.54 | 11.58 | 15.57 | 8.97 | 41.30 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar) | +| HRNet_W40_C | 0.7877 | 0.9447 | 9.83 | 15.02 | 20.92 | 12.74 | 57.64 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar) | +| HRNet_W44_C | 0.7900 | 0.9451 | 10.62 | 16.18 | 25.92 | 14.94 | 67.16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar) | +| HRNet_W48_C | 0.7895 | 0.9442 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar) | +| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 11.07 | 17.06 | 27.28 | 17.34 | 77.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) | +| HRNet_W64_C | 0.7930 | 0.9461 | 13.82 | 21.15 | 35.51 | 28.97 | 128.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar) | +| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 17.11 | 26.87 | 43.24 | 29.00 | 129.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) | @@ -275,16 +275,16 @@ HRNet 系列模型的精度、速度指标如下表所示,更多关于该系 Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](../models/Inception.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------| -| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 1.44 | 11.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) | -| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 8.57 | 23.02 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams) | -| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 9.28 | 27.08 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | -| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 13.25 | 36.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams) | -| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 13.96 | 40.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | -| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 16.21 | 37.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams) | -| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 5.73 | 23.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) | -| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 12.29 | 42.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------| +| GoogLeNet | 0.7070 | 0.8966 | 1.41 | 3.25 | 5.00 | 1.44 | 11.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar) | +| Xception41 | 0.7930 | 0.9453 | 3.58 | 8.76 | 16.61 | 8.57 | 23.02 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar) | +| Xception41_deeplab | 0.7955 | 0.9438 | 3.81 | 9.16 | 17.20 | 9.28 | 27.08 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar) | +| Xception65 | 0.8100 | 0.9549 | 5.45 | 12.78 | 24.53 | 13.25 | 36.04 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar) | +| Xception65_deeplab | 0.8032 | 0.9449 | 5.65 | 13.08 | 24.61 | 13.96 | 40.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar) | +| Xception71 | 0.8111 | 0.9545 | 6.19 | 15.34 | 29.21 | 16.21 | 37.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar) | +| InceptionV3 | 0.7914 | 0.9459 | 4.78 | 8.53 | 12.28 | 5.73 | 23.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar) | +| InceptionV4 | 0.8077 | 0.9526 | 8.93 | 15.17 | 21.56 | 12.29 | 42.74 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar) | @@ -293,22 +293,22 @@ Inception 系列模型的精度、速度指标如下表所示,更多关于该 EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 与 ResNeXt101_wsl 系列模型文档](../models/EfficientNet_and_ResNeXt101_wsl.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------| -| ResNeXt101_
32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 | 16.48 | 88.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 | 36.26 | 194.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 | 87.28 | 469.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 153.57 | 829.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams) | -| Fix_ResNeXt101_
32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 313.41 | 829.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | -| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.40 | 5.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams) | -| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 0.71 | 7.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams) | -| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.02 | 9.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams) | -| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 1.88 | 12.324 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams) | -| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 4.51 | 19.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams) | -| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 10.51 | 30.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams) | -| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 19.47 | 43.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams) | -| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 38.45 | 66.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) | -| EfficientNetB0_
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.40 | 4.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------| +| ResNeXt101_
32x8d_wsl | 0.8255 | 0.9674 | 13.55 | 23.39 | 36.18 | 16.48 | 88.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar) | +| ResNeXt101_
32x16d_wsl | 0.8424 | 0.9726 | 21.96 | 38.35 | 63.29 | 36.26 | 194.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar) | +| ResNeXt101_
32x32d_wsl | 0.8497 | 0.9759 | 37.28 | 76.50 | 121.56 | 87.28 | 469.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar) | +| ResNeXt101_
32x48d_wsl | 0.8537 | 0.9769 | 55.07 | 124.39 | 205.01 | 153.57 | 829.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar) | +| Fix_ResNeXt101_
32x48d_wsl | 0.8626 | 0.9797 | 55.01 | 122.63 | 204.66 | 313.41 | 829.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar) | +| EfficientNetB0 | 0.7738 | 0.9331 | 1.96 | 3.71 | 5.56 | 0.40 | 5.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar) | +| EfficientNetB1 | 0.7915 | 0.9441 | 2.88 | 5.40 | 7.63 | 0.71 | 7.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar) | +| EfficientNetB2 | 0.7985 | 0.9474 | 3.26 | 6.20 | 9.17 | 1.02 | 9.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar) | +| EfficientNetB3 | 0.8115 | 0.9541 | 4.52 | 8.85 | 13.54 | 1.88 | 12.324 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar) | +| EfficientNetB4 | 0.8285 | 0.9623 | 6.78 | 15.47 | 24.95 | 4.51 | 19.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar) | +| EfficientNetB5 | 0.8362 | 0.9672 | 10.97 | 27.24 | 45.93 | 10.51 | 30.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar) | +| EfficientNetB6 | 0.8400 | 0.9688 | 17.09 | 43.32 | 76.90 | 19.47 | 43.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar) | +| EfficientNetB7 | 0.8430 | 0.9689 | 25.91 | 71.23 | 128.20 | 38.45 | 66.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar) | +| EfficientNetB0_
small | 0.7580 | 0.9258 | 1.24 | 2.59 | 3.92 | 0.40 | 4.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar) | @@ -317,11 +317,11 @@ EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所 ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](../models/ResNeSt_RegNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| ResNeSt50_
fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 | 4.36 | 26.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | -| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 | 5.40 | 27.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) | -| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 4.00 | 22.23 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| +| ResNeSt50_
fast_1s1x64d | 0.8035 | 0.9528 | 2.73 | 5.33 | 8.24 | 4.36 | 26.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar) | +| ResNeSt50 | 0.8083 | 0.9542 | 7.36 | 10.23 | 13.84 | 5.40 | 27.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) | +| RegNetX_4GF | 0.785 | 0.9416 | 6.46 | 8.48 | 11.45 | 4.00 | 22.23 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar) | @@ -330,30 +330,28 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多 ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------| -| ViT_small_
patch16_224 | 0.7769 | 0.9342 | - | - | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | -| ViT_base_
patch16_224 | 0.8195 | 0.9617 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | -| ViT_base_
patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | -| ViT_base_
patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | -| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | -| ViT_large_
patch16_384 | 0.8513 | 0.9736 | - | - | 174.70 | 304.12 - - | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | -| ViT_large_
patch32_384 | 0.8153 | 0.9608 | - | - | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------| +| ViT_small_
patch16_224 | 0.7769 | 0.9342 | 3.71 | 9.05 | 16.72 | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) | +| ViT_base_
patch16_224 | 0.8195 | 0.9617 | 6.12 | 14.84 | 28.51 | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) | +| ViT_base_
patch16_384 | 0.8414 | 0.9717 | 14.15 | 48.38 | 95.06 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) | +| ViT_base_
patch32_384 | 0.8176 | 0.9613 | 4.94 | 13.43 | 24.08 | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) | +| ViT_large_
patch16_224 | 0.8323 | 0.9650 | 15.53 | 49.50 | 94.09 | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) | +|ViT_large_
patch16_384| 0.8513 | 0.9736 | 39.51 | 152.46 | 304.06 | 174.70 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) | +|ViT_large_
patch32_384| 0.8153 | 0.9608 | 11.44 | 36.09 | 70.63 | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) | -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------| -| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | - | - | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | -| DeiT_small_
patch16_224 | 0.796 | 0.949 | - | - | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | -| DeiT_base_
patch16_224 | 0.817 | 0.957 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | -| DeiT_base_
patch16_384 | 0.830 | 0.962 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | -| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | - | - | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | -| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | -| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | -| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------| +| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | 3.61 | 3.94 | 6.10 | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) | +| DeiT_small_
patch16_224 | 0.796 | 0.949 | 3.61 | 6.24 | 10.49 | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) | +| DeiT_base_
patch16_224 | 0.817 | 0.957 | 6.13 | 14.87 | 28.50 | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) | +| DeiT_base_
patch16_384 | 0.830 | 0.962 | 14.12 | 48.80 | 97.60 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) | +| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | 3.51 | 4.05 | 6.03 | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) | +| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | 3.70 | 6.20 | 10.53 | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) | +| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | 6.17 | 14.94 | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) | +| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | 14.12 | 48.76 | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) | @@ -362,18 +360,18 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](../models/RepVGG.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| RepVGG_A0 | 0.7131 | 0.9016 | | | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | -| RepVGG_A1 | 0.7380 | 0.9146 | | | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | -| RepVGG_A2 | 0.7571 | 0.9264 | | | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | -| RepVGG_B0 | 0.7450 | 0.9213 | | | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | -| RepVGG_B1 | 0.7773 | 0.9385 | | | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | -| RepVGG_B2 | 0.7813 | 0.9410 | | | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | -| RepVGG_B1g2 | 0.7732 | 0.9359 | | | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | -| RepVGG_B1g4 | 0.7675 | 0.9335 | | | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | -| RepVGG_B2g4 | 0.7881 | 0.9448 | | | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | -| RepVGG_B3g4 | 0.7965 | 0.9485 | | | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| +| RepVGG_A0 | 0.7131 | 0.9016 | | | | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) | +| RepVGG_A1 | 0.7380 | 0.9146 | | | | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) | +| RepVGG_A2 | 0.7571 | 0.9264 | | | | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) | +| RepVGG_B0 | 0.7450 | 0.9213 | | | | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) | +| RepVGG_B1 | 0.7773 | 0.9385 | | | | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) | +| RepVGG_B2 | 0.7813 | 0.9410 | | | | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) | +| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) | +| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) | +| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) | +| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) | @@ -381,11 +379,11 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](../models/MixNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(M) | Params(M) | 下载地址 | -| -------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| MixNet_S | 0.7628 | 0.9299 | | | 252.977 | 4.167 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | -| MixNet_M | 0.7767 | 0.9364 | | | 357.119 | 5.065 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | -| MixNet_L | 0.7860 | 0.9437 | | | 579.017 | 7.384 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| -------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | +| MixNet_S | 0.7628 | 0.9299 | 2.31 | 3.63 | 5.20 | 252.977 | 4.167 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar) | +| MixNet_M | 0.7767 | 0.9364 | 2.84 | 4.60 | 6.62 | 357.119 | 5.065 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar) | +| MixNet_L | 0.7860 | 0.9437 | 3.16 | 5.55 | 8.03 | 579.017 | 7.384 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar) | @@ -393,13 +391,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](../models/ReXNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | -| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.68 | 7.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | -| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.90 | 9.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | -| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.56 | 16.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | -| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.44 | 34.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| ReXNet_1_0 | 0.7746 | 0.9370 | 3.08 | 4.15 | 5.49 | 0.415 | 4.84 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar) | +| ReXNet_1_3 | 0.7913 | 0.9464 | 3.54 | 4.87 | 6.54 | 0.68 | 7.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar) | +| ReXNet_1_5 | 0.8006 | 0.9512 | 3.68 | 5.31 | 7.38 | 0.90 | 9.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar) | +| ReXNet_2_0 | 0.8122 | 0.9536 | 4.30 | 6.54 | 9.19 | 1.56 | 16.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar) | +| ReXNet_3_0 | 0.8209 | 0.9612 | 5.74 | 9.49 | 13.62 | 3.44 | 34.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar) | @@ -407,16 +405,16 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | -| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | -| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | -| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | -| SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | -| SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | -| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | | | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | -| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | | | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 6.59 | 9.68 | 16.32 | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) | +| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 12.54 | 17.07 | 28.08 | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) | +| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | 13.37 | 23.53 | 39.11 | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) | +| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) | +| SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) | +| SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) | +| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar) | +| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar) | [1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 @@ -426,13 +424,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(M) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| LeViT_128S | 0.7598 | 0.9269 | | | 281 | 7.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | -| LeViT_128 | 0.7810 | 0.9371 | | | 365 | 8.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | -| LeViT_192 | 0.7934 | 0.9446 | | | 597 | 10.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | -| LeViT_256 | 0.8085 | 0.9497 | | | 1049 | 18.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | -| LeViT_384 | 0.8191 | 0.9551 | | | 2234 | 38.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar) | +| LeViT_128 | 0.7810 | 0.9371 | | | | 365 | 8.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) | +| LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) | +| LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) | +| LeViT_384 | 0.8191 | 0.9551 | | | | 2234 | 38.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) | **注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。 @@ -442,14 +440,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| pcpvt_small | 0.8082 | 0.9552 | | |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | -| pcpvt_base | 0.8242 | 0.9619 | | | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | -| pcpvt_large | 0.8273 | 0.9650 | | | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | -| alt_gvt_small | 0.8140 | 0.9546 | | |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | -| alt_gvt_base | 0.8294 | 0.9621 | | | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | -| alt_gvt_large | 0.8331 | 0.9642 | | | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| pcpvt_small | 0.8082 | 0.9552 | 7.32 | 10.51 | 15.27 |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) | +| pcpvt_base | 0.8242 | 0.9619 | 12.20 | 16.22 | 23.16 | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) | +| pcpvt_large | 0.8273 | 0.9650 | 16.47 | 22.90 | 32.73 | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) | +| alt_gvt_small | 0.8140 | 0.9546 | 6.94 | 9.01 | 12.27 |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) | +| alt_gvt_base | 0.8294 | 0.9621 | 9.37 | 15.02 | 24.54 | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) | +| alt_gvt_large | 0.8331 | 0.9642 | 11.76 | 22.08 | 35.12 | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) | **注**:与 Reference 的精度差异源于数据预处理不同。 @@ -459,12 +457,12 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](../models/HarDNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| HarDNet39_ds | 0.7133 |0.8998 | | | 0.44 | 3.51 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) | -| HarDNet68_ds |0.7362 | 0.9152 | | | 0.79 | 4.20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) | -| HarDNet68| 0.7546 | 0.9265 | | | 4.26 | 17.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | -| HarDNet85 | 0.7744 | 0.9355 | | | 9.09 | 36.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| HarDNet39_ds | 0.7133 |0.8998 | 1.40 | 2.30 | 3.33 | 0.44 | 3.51 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar) | +| HarDNet68_ds |0.7362 | 0.9152 | 2.26 | 3.34 | 5.06 | 0.79 | 4.20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar) | +| HarDNet68| 0.7546 | 0.9265 | 3.58 | 8.53 | 11.58 | 4.26 | 17.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar) | +| HarDNet85 | 0.7744 | 0.9355 | 6.24 | 14.85 | 20.57 | 9.09 | 36.69 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar) | @@ -472,17 +470,17 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](../models/DLA.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| DLA102 | 0.7893 |0.9452 | | | 7.19 | 33.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) | -| DLA102x2 |0.7885 | 0.9445 | | | 9.34 | 41.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) | -| DLA102x| 0.781 | 0.9400 | | | 5.89 | 26.40 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) | -| DLA169 | 0.7809 | 0.9409 | | | 11.59 | 53.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) | -| DLA34 | 0.7603 | 0.9298 | | | 3.07 | 15.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) | -| DLA46_c |0.6321 | 0.853 | | | 0.54 | 1.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) | -| DLA60 | 0.7610 | 0.9292 | | | 4.26 | 22.08 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) | -| DLA60x_c | 0.6645 | 0.8754 | | | 0.59 | 1.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | -| DLA60x | 0.7753 | 0.9378 | | | 3.54 | 17.41 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| DLA102 | 0.7893 |0.9452 | 4.95 | 8.08 | 12.40 | 7.19 | 33.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar) | +| DLA102x2 |0.7885 | 0.9445 | 19.58 | 23.97 | 31.37 | 9.34 | 41.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar) | +| DLA102x| 0.781 | 0.9400 | 11.12 | 15.60 | 20.37 | 5.89 | 26.40 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar) | +| DLA169 | 0.7809 | 0.9409 | 7.70 | 12.25 | 18.90 | 11.59 | 53.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar) | +| DLA34 | 0.7603 | 0.9298 | 1.83 | 3.37 | 5.98 | 3.07 | 15.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar) | +| DLA46_c |0.6321 | 0.853 | 1.06 | 2.08 | 3.23 | 0.54 | 1.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar) | +| DLA60 | 0.7610 | 0.9292 | 2.78 | 5.36 | 8.29 | 4.26 | 22.08 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar) | +| DLA60x_c | 0.6645 | 0.8754 | 1.79 | 3.68 | 5.19 | 0.59 | 1.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar) | +| DLA60x | 0.7753 | 0.9378 | 5.98 | 9.24 | 12.52 | 3.54 | 17.41 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar) | @@ -490,13 +488,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](../models/RedNet.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| RedNet26 | 0.7595 |0.9319 | | | 1.69 | 9.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) | -| RedNet38 |0.7747 | 0.9356 | | | 2.14 | 12.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) | -| RedNet50| 0.7833 | 0.9417 | | | 2.61 | 15.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) | -| RedNet101 | 0.7894 | 0.9436 | | | 4.59 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | -| RedNet152 | 0.7917 | 0.9440 | | | 6.57 | 34.14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| RedNet26 | 0.7595 |0.9319 | 4.45 | 15.16 | 29.03 | 1.69 | 9.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar) | +| RedNet38 |0.7747 | 0.9356 | 6.24 | 21.39 | 41.26 | 2.14 | 12.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar) | +| RedNet50| 0.7833 | 0.9417 | 8.04 | 27.71 | 53.73 | 2.61 | 15.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar) | +| RedNet101 | 0.7894 | 0.9436 | 13.07 | 44.12 | 83.28 | 4.59 | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar) | +| RedNet152 | 0.7917 | 0.9440 | 18.66 | 63.27 | 119.48 | 6.57 | 34.14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar) | @@ -504,9 +502,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| TNT_small | 0.8121 |0.9563 | | | 4.83 | 23.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | +| TNT_small | 0.8121 |0.9563 | | | 4.83 | 23.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar) | **注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean` 与 `std` 均为 0.5。 @@ -517,13 +515,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模 关于 AlexNet、SqueezeNet 系列、VGG 系列、DarkNet53 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](../models/Others.md)。 -| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 0.71 | 61.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | -| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 0.78 | 1.25 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | -| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.35 | 1.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | -| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 7.61 | 132.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) | -| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 11.31 | 133.05 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) | -| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 15.470 | 138.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) | -| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 19.63 | 143.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) | -| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 9.31 | 41.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | +| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 | +|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| +| AlexNet | 0.567 | 0.792 | 0.81 | 1.50 | 2.33 | 0.71 | 61.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar) | +| SqueezeNet1_0 | 0.596 | 0.817 | 0.68 | 1.64 | 2.62 | 0.78 | 1.25 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar) | +| SqueezeNet1_1 | 0.601 | 0.819 | 0.62 | 1.30 | 2.09 | 0.35 | 1.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar) | +| VGG11 | 0.693 | 0.891 | 1.72 | 4.15 | 7.24 | 7.61 | 132.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar) | +| VGG13 | 0.700 | 0.894 | 2.02 | 5.28 | 9.54 | 11.31 | 133.05 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar) | +| VGG16 | 0.720 | 0.907 | 2.48 | 6.79 | 12.33 | 15.470 | 138.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar) | +| VGG19 | 0.726 | 0.909 | 2.93 | 8.28 | 15.21 | 19.63 | 143.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar) | +| DarkNet53 | 0.780 | 0.941 | 2.79 | 6.42 | 10.89 | 9.31 | 41.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar) | diff --git a/docs/zh_CN/images/10w_cls.png b/docs/zh_CN/images/10w_cls.png deleted file mode 100644 index 9db4833ba..000000000 Binary files a/docs/zh_CN/images/10w_cls.png and /dev/null differ diff --git a/docs/zh_CN/images/PP-LCNet/PP-LCNet-Acc.png b/docs/zh_CN/images/PP-LCNet/PP-LCNet-Acc.png deleted file mode 100644 index 57c6da662..000000000 Binary files a/docs/zh_CN/images/PP-LCNet/PP-LCNet-Acc.png and /dev/null differ diff --git a/docs/zh_CN/images/PP-LCNet/PP-LCNet.png b/docs/zh_CN/images/PP-LCNet/PP-LCNet.png deleted file mode 100644 index df35aa798..000000000 Binary files a/docs/zh_CN/images/PP-LCNet/PP-LCNet.png and /dev/null differ diff --git a/docs/zh_CN/images/VisualDL/train_loss.png b/docs/zh_CN/images/VisualDL/train_loss.png deleted file mode 100644 index 6697707bf..000000000 Binary files a/docs/zh_CN/images/VisualDL/train_loss.png and /dev/null differ diff --git a/docs/zh_CN/images/algorithm_introduction/fpgm.png b/docs/zh_CN/images/algorithm_introduction/fpgm.png deleted file mode 100644 index a773e8d21..000000000 Binary files a/docs/zh_CN/images/algorithm_introduction/fpgm.png and /dev/null differ diff --git a/docs/zh_CN/images/algorithm_introduction/quantization.jpg b/docs/zh_CN/images/algorithm_introduction/quantization.jpg deleted file mode 100644 index abb99b7ae..000000000 Binary files a/docs/zh_CN/images/algorithm_introduction/quantization.jpg and /dev/null differ diff --git a/docs/zh_CN/images/algorithm_introduction/quantization_formula.png b/docs/zh_CN/images/algorithm_introduction/quantization_formula.png deleted file mode 100644 index 4d9dbe260..000000000 Binary files a/docs/zh_CN/images/algorithm_introduction/quantization_formula.png and /dev/null differ diff --git a/docs/zh_CN/images/algorithm_introduction/quantization_formula_slim.png b/docs/zh_CN/images/algorithm_introduction/quantization_formula_slim.png deleted file mode 100644 index 989f6ac35..000000000 Binary files a/docs/zh_CN/images/algorithm_introduction/quantization_formula_slim.png and /dev/null differ diff --git a/docs/zh_CN/images/det/PaddleDetection_config.png b/docs/zh_CN/images/det/PaddleDetection_config.png deleted file mode 100644 index d18932b66..000000000 Binary files a/docs/zh_CN/images/det/PaddleDetection_config.png and /dev/null differ diff --git a/docs/zh_CN/images/det/pssdet.png b/docs/zh_CN/images/det/pssdet.png deleted file mode 100644 index e3b213eea..000000000 Binary files a/docs/zh_CN/images/det/pssdet.png and /dev/null differ diff --git a/docs/zh_CN/images/distillation/22k_1k_val_compare_w_sift.png b/docs/zh_CN/images/distillation/22k_1k_val_compare_w_sift.png deleted file mode 100644 index d97e6f966..000000000 Binary files a/docs/zh_CN/images/distillation/22k_1k_val_compare_w_sift.png and /dev/null differ diff --git a/docs/zh_CN/images/distillation/distillation_perform.png b/docs/zh_CN/images/distillation/distillation_perform.png deleted file mode 100644 index 34cbacd90..000000000 Binary files a/docs/zh_CN/images/distillation/distillation_perform.png and /dev/null differ diff --git a/docs/zh_CN/images/distillation/distillation_perform_s.jpg b/docs/zh_CN/images/distillation/distillation_perform_s.jpg deleted file mode 100644 index 181a49012..000000000 Binary files a/docs/zh_CN/images/distillation/distillation_perform_s.jpg and /dev/null differ diff --git a/docs/zh_CN/images/distillation/ppcls_distillation.png b/docs/zh_CN/images/distillation/ppcls_distillation.png deleted file mode 100644 index d6cd7af71..000000000 Binary files a/docs/zh_CN/images/distillation/ppcls_distillation.png and /dev/null differ diff --git a/docs/zh_CN/images/distillation/ppcls_distillation_s.jpg b/docs/zh_CN/images/distillation/ppcls_distillation_s.jpg deleted file mode 100644 index 95402d401..000000000 Binary files a/docs/zh_CN/images/distillation/ppcls_distillation_s.jpg and /dev/null differ diff --git a/docs/zh_CN/images/faq/ACNetFusion.png b/docs/zh_CN/images/faq/ACNetFusion.png deleted file mode 100644 index 7068d93aa..000000000 Binary files a/docs/zh_CN/images/faq/ACNetFusion.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/ACNetReParams.png b/docs/zh_CN/images/faq/ACNetReParams.png deleted file mode 100644 index 91dae1b55..000000000 Binary files a/docs/zh_CN/images/faq/ACNetReParams.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/DeployedACNet.png b/docs/zh_CN/images/faq/DeployedACNet.png deleted file mode 100644 index e4900e0c2..000000000 Binary files a/docs/zh_CN/images/faq/DeployedACNet.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/HRNet.png b/docs/zh_CN/images/faq/HRNet.png deleted file mode 100644 index 87d2992c1..000000000 Binary files a/docs/zh_CN/images/faq/HRNet.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/HRNet_block.png b/docs/zh_CN/images/faq/HRNet_block.png deleted file mode 100644 index 03c244a09..000000000 Binary files a/docs/zh_CN/images/faq/HRNet_block.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/HorizontalKernel.png b/docs/zh_CN/images/faq/HorizontalKernel.png deleted file mode 100644 index eb00792c1..000000000 Binary files a/docs/zh_CN/images/faq/HorizontalKernel.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/MemoryOccupation.png b/docs/zh_CN/images/faq/MemoryOccupation.png deleted file mode 100644 index d4dec8d75..000000000 Binary files a/docs/zh_CN/images/faq/MemoryOccupation.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/RepVGG.png b/docs/zh_CN/images/faq/RepVGG.png deleted file mode 100644 index 5c09ae76c..000000000 Binary files a/docs/zh_CN/images/faq/RepVGG.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/RepVGGReParams.png b/docs/zh_CN/images/faq/RepVGGReParams.png deleted file mode 100644 index 5b951568b..000000000 Binary files a/docs/zh_CN/images/faq/RepVGGReParams.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/ResNet_vabcd_structure.png b/docs/zh_CN/images/faq/ResNet_vabcd_structure.png deleted file mode 100644 index 8aacb6770..000000000 Binary files a/docs/zh_CN/images/faq/ResNet_vabcd_structure.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/SE_structure.png b/docs/zh_CN/images/faq/SE_structure.png deleted file mode 100644 index 1d96ec30b..000000000 Binary files a/docs/zh_CN/images/faq/SE_structure.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/TrainingtimeACNet.png b/docs/zh_CN/images/faq/TrainingtimeACNet.png deleted file mode 100644 index 1d8d0a1d4..000000000 Binary files a/docs/zh_CN/images/faq/TrainingtimeACNet.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/Transformer_input.png b/docs/zh_CN/images/faq/Transformer_input.png deleted file mode 100644 index 977f0928d..000000000 Binary files a/docs/zh_CN/images/faq/Transformer_input.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/ViT.png b/docs/zh_CN/images/faq/ViT.png deleted file mode 100644 index 41a36ef59..000000000 Binary files a/docs/zh_CN/images/faq/ViT.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/ViT_structure.png b/docs/zh_CN/images/faq/ViT_structure.png deleted file mode 100644 index 25ebe9f6d..000000000 Binary files a/docs/zh_CN/images/faq/ViT_structure.png and /dev/null differ diff --git a/docs/zh_CN/images/faq/momentum.jpeg b/docs/zh_CN/images/faq/momentum.jpeg deleted file mode 100644 index cb3cb0b0a..000000000 Binary files a/docs/zh_CN/images/faq/momentum.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/feature_maps/feature_visualization_input.jpg b/docs/zh_CN/images/feature_maps/feature_visualization_input.jpg deleted file mode 100644 index 6eb5b7143..000000000 Binary files a/docs/zh_CN/images/feature_maps/feature_visualization_input.jpg and /dev/null differ diff --git a/docs/zh_CN/images/feature_maps/feature_visualization_output.jpg b/docs/zh_CN/images/feature_maps/feature_visualization_output.jpg deleted file mode 100644 index 6d7d2a6e8..000000000 Binary files a/docs/zh_CN/images/feature_maps/feature_visualization_output.jpg and /dev/null differ diff --git a/docs/zh_CN/images/icartoon1.png b/docs/zh_CN/images/icartoon1.png deleted file mode 100644 index c52989f6d..000000000 Binary files a/docs/zh_CN/images/icartoon1.png and /dev/null differ diff --git a/docs/zh_CN/images/icartoon2.jpeg b/docs/zh_CN/images/icartoon2.jpeg deleted file mode 100644 index 160112659..000000000 Binary files a/docs/zh_CN/images/icartoon2.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/gridmask-0.png b/docs/zh_CN/images/image_aug/gridmask-0.png deleted file mode 100644 index 2d6997a24..000000000 Binary files a/docs/zh_CN/images/image_aug/gridmask-0.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/hide-and-seek-visual.png b/docs/zh_CN/images/image_aug/hide-and-seek-visual.png deleted file mode 100644 index 7f25576c7..000000000 Binary files a/docs/zh_CN/images/image_aug/hide-and-seek-visual.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/image_aug_samples.png b/docs/zh_CN/images/image_aug/image_aug_samples.png deleted file mode 100644 index 0861fcdc9..000000000 Binary files a/docs/zh_CN/images/image_aug/image_aug_samples.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/image_aug_samples_s.jpg b/docs/zh_CN/images/image_aug/image_aug_samples_s.jpg deleted file mode 100644 index aad144ae6..000000000 Binary files a/docs/zh_CN/images/image_aug/image_aug_samples_s.jpg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/image_aug_samples_s_en.jpg b/docs/zh_CN/images/image_aug/image_aug_samples_s_en.jpg deleted file mode 100644 index 2cd1a3a9f..000000000 Binary files a/docs/zh_CN/images/image_aug/image_aug_samples_s_en.jpg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/main_image_aug.png b/docs/zh_CN/images/image_aug/main_image_aug.png deleted file mode 100644 index 82a517ae9..000000000 Binary files a/docs/zh_CN/images/image_aug/main_image_aug.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/main_image_aug_s.jpg b/docs/zh_CN/images/image_aug/main_image_aug_s.jpg deleted file mode 100644 index efaa27c64..000000000 Binary files a/docs/zh_CN/images/image_aug/main_image_aug_s.jpg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_autoaugment.jpeg b/docs/zh_CN/images/image_aug/test_autoaugment.jpeg deleted file mode 100644 index 207017fd1..000000000 Binary files a/docs/zh_CN/images/image_aug/test_autoaugment.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_baseline.jpeg b/docs/zh_CN/images/image_aug/test_baseline.jpeg deleted file mode 100644 index 3fa2d3a25..000000000 Binary files a/docs/zh_CN/images/image_aug/test_baseline.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_cutmix.png b/docs/zh_CN/images/image_aug/test_cutmix.png deleted file mode 100644 index 9a396be43..000000000 Binary files a/docs/zh_CN/images/image_aug/test_cutmix.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_cutout.jpeg b/docs/zh_CN/images/image_aug/test_cutout.jpeg deleted file mode 100644 index ad18f9d0a..000000000 Binary files a/docs/zh_CN/images/image_aug/test_cutout.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_gridmask.jpeg b/docs/zh_CN/images/image_aug/test_gridmask.jpeg deleted file mode 100644 index 698c7932b..000000000 Binary files a/docs/zh_CN/images/image_aug/test_gridmask.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_hideandseek.jpeg b/docs/zh_CN/images/image_aug/test_hideandseek.jpeg deleted file mode 100644 index 55f1adac1..000000000 Binary files a/docs/zh_CN/images/image_aug/test_hideandseek.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_mixup.png b/docs/zh_CN/images/image_aug/test_mixup.png deleted file mode 100644 index e5d2807a2..000000000 Binary files a/docs/zh_CN/images/image_aug/test_mixup.png and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_randaugment.jpeg b/docs/zh_CN/images/image_aug/test_randaugment.jpeg deleted file mode 100644 index 7126f0577..000000000 Binary files a/docs/zh_CN/images/image_aug/test_randaugment.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/image_aug/test_randomerassing.jpeg b/docs/zh_CN/images/image_aug/test_randomerassing.jpeg deleted file mode 100644 index ff31bc219..000000000 Binary files a/docs/zh_CN/images/image_aug/test_randomerassing.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/cpp_infer_result.png b/docs/zh_CN/images/inference_deployment/cpp_infer_result.png deleted file mode 100644 index fe9de1aa4..000000000 Binary files a/docs/zh_CN/images/inference_deployment/cpp_infer_result.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/lite_demo_result.png b/docs/zh_CN/images/inference_deployment/lite_demo_result.png deleted file mode 100644 index b778f158d..000000000 Binary files a/docs/zh_CN/images/inference_deployment/lite_demo_result.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step1.png b/docs/zh_CN/images/inference_deployment/vs2019_step1.png deleted file mode 100644 index 58fdf2fd6..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step1.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step2.png b/docs/zh_CN/images/inference_deployment/vs2019_step2.png deleted file mode 100644 index f1b5fd0a1..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step2.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step3.png b/docs/zh_CN/images/inference_deployment/vs2019_step3.png deleted file mode 100644 index cb1b2aea9..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step3.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step4.png b/docs/zh_CN/images/inference_deployment/vs2019_step4.png deleted file mode 100644 index 5fc040822..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step4.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step5.png b/docs/zh_CN/images/inference_deployment/vs2019_step5.png deleted file mode 100644 index fbb2e4ce1..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step5.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/vs2019_step6.png b/docs/zh_CN/images/inference_deployment/vs2019_step6.png deleted file mode 100644 index 86a8039cb..000000000 Binary files a/docs/zh_CN/images/inference_deployment/vs2019_step6.png and /dev/null differ diff --git a/docs/zh_CN/images/inference_deployment/whl_demo.jpg b/docs/zh_CN/images/inference_deployment/whl_demo.jpg deleted file mode 100644 index cc7bff445..000000000 Binary files a/docs/zh_CN/images/inference_deployment/whl_demo.jpg and /dev/null differ diff --git a/docs/zh_CN/images/joinus.png b/docs/zh_CN/images/joinus.png deleted file mode 100644 index 5fddb4a14..000000000 Binary files a/docs/zh_CN/images/joinus.png and /dev/null differ diff --git a/docs/zh_CN/images/logo.png b/docs/zh_CN/images/logo.png deleted file mode 100644 index bc1135abf..000000000 Binary files a/docs/zh_CN/images/logo.png and /dev/null differ diff --git a/docs/zh_CN/images/logo/logodet3k.jpg b/docs/zh_CN/images/logo/logodet3k.jpg deleted file mode 100644 index 4c3e719d2..000000000 Binary files a/docs/zh_CN/images/logo/logodet3k.jpg and /dev/null differ diff --git a/docs/zh_CN/images/main_features.png b/docs/zh_CN/images/main_features.png deleted file mode 100644 index d663c99a6..000000000 Binary files a/docs/zh_CN/images/main_features.png and /dev/null differ diff --git a/docs/zh_CN/images/main_features_s.png b/docs/zh_CN/images/main_features_s.png deleted file mode 100644 index 266fa220a..000000000 Binary files a/docs/zh_CN/images/main_features_s.png and /dev/null differ diff --git a/docs/zh_CN/images/main_features_s_en.png b/docs/zh_CN/images/main_features_s_en.png deleted file mode 100644 index 8f038fd12..000000000 Binary files a/docs/zh_CN/images/main_features_s_en.png and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/cartoon_vis_en_v1.0.gif b/docs/zh_CN/images/mainpage/cartoon_vis_en_v1.0.gif deleted file mode 100644 index 9450f09c7..000000000 Binary files a/docs/zh_CN/images/mainpage/cartoon_vis_en_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/cartoon_vis_v1.0.gif b/docs/zh_CN/images/mainpage/cartoon_vis_v1.0.gif deleted file mode 100644 index 86b3f8a2b..000000000 Binary files a/docs/zh_CN/images/mainpage/cartoon_vis_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/logo_vis_en_v1.0.gif b/docs/zh_CN/images/mainpage/logo_vis_en_v1.0.gif deleted file mode 100644 index a3fceb2fd..000000000 Binary files a/docs/zh_CN/images/mainpage/logo_vis_en_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/logo_vis_v1.0.gif b/docs/zh_CN/images/mainpage/logo_vis_v1.0.gif deleted file mode 100644 index d8062ac23..000000000 Binary files a/docs/zh_CN/images/mainpage/logo_vis_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/product_vis_en_v1.0.gif b/docs/zh_CN/images/mainpage/product_vis_en_v1.0.gif deleted file mode 100644 index eec44876d..000000000 Binary files a/docs/zh_CN/images/mainpage/product_vis_en_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/product_vis_v1.0.gif b/docs/zh_CN/images/mainpage/product_vis_v1.0.gif deleted file mode 100644 index 3042aca7e..000000000 Binary files a/docs/zh_CN/images/mainpage/product_vis_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/recognition_pipeline_en.png b/docs/zh_CN/images/mainpage/recognition_pipeline_en.png deleted file mode 100644 index 854fe5574..000000000 Binary files a/docs/zh_CN/images/mainpage/recognition_pipeline_en.png and /dev/null differ diff --git a/docs/zh_CN/images/mainpage/vehicle_vis_en_v1.0.gif b/docs/zh_CN/images/mainpage/vehicle_vis_en_v1.0.gif deleted file mode 100644 index 75e218e90..000000000 Binary files a/docs/zh_CN/images/mainpage/vehicle_vis_en_v1.0.gif and /dev/null differ diff --git a/docs/zh_CN/images/ml_illustration.jpg b/docs/zh_CN/images/ml_illustration.jpg deleted file mode 100644 index 69dced96b..000000000 Binary files a/docs/zh_CN/images/ml_illustration.jpg and /dev/null differ diff --git a/docs/zh_CN/images/ml_pipeline.jpg b/docs/zh_CN/images/ml_pipeline.jpg deleted file mode 100644 index cac650892..000000000 Binary files a/docs/zh_CN/images/ml_pipeline.jpg and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png deleted file mode 100644 index 1c87d711e..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.DPN.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.DPN.png deleted file mode 100644 index 1eb393903..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.DPN.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.HRNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.HRNet.png deleted file mode 100644 index f21d63cd1..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.HRNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.Inception.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.Inception.png deleted file mode 100644 index 8095a3c02..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.Inception.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.ResNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.ResNet.png deleted file mode 100644 index dd2527679..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.ResNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png deleted file mode 100644 index 960e62ace..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png deleted file mode 100644 index 395a32f5c..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png deleted file mode 100644 index 049702858..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png deleted file mode 100644 index 24aabf8c3..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png deleted file mode 100644 index 689e73d31..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.png deleted file mode 100644 index dc3922d2e..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.DPN.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png deleted file mode 100644 index deacfaca6..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png deleted file mode 100644 index 7177bbc56..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png deleted file mode 100644 index 062ecd79d..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png deleted file mode 100644 index 4bb3f76ca..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.png deleted file mode 100644 index 3905f0b38..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.HRNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png deleted file mode 100644 index 6fdc94b27..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png deleted file mode 100644 index 25a5d1648..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.png deleted file mode 100644 index 7ef4f339a..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.Inception.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png deleted file mode 100644 index 57e030360..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png deleted file mode 100644 index 3440e3a30..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.png deleted file mode 100644 index 8db3c2d0e..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.ResNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png deleted file mode 100644 index 4e6fa84bb..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png deleted file mode 100644 index afb66bd02..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png deleted file mode 100644 index 10cdd0ac3..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png deleted file mode 100644 index 9750c19a3..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.flops.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.flops.png deleted file mode 100644 index 8c1be3ae9..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.flops.png and /dev/null differ diff --git a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.params.png b/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.params.png deleted file mode 100644 index a41a325b5..000000000 Binary files a/docs/zh_CN/images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.params.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.DPN.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.DPN.png deleted file mode 100644 index 10f542b7f..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.DPN.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.EfficientNet.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.EfficientNet.png deleted file mode 100644 index 0491ff3e6..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.EfficientNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.HRNet.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.HRNet.png deleted file mode 100644 index 284088ec5..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.HRNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.Inception.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.Inception.png deleted file mode 100644 index 0e0e42e7c..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.Inception.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.ResNet.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.ResNet.png deleted file mode 100644 index 233279186..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.ResNet.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.SeResNeXt.png b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.SeResNeXt.png deleted file mode 100644 index 610c84634..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.SeResNeXt.png and /dev/null differ diff --git a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg b/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg deleted file mode 100644 index 44a101c67..000000000 Binary files a/docs/zh_CN/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg and /dev/null differ diff --git a/docs/zh_CN/images/models/lr_decay.jpeg b/docs/zh_CN/images/models/lr_decay.jpeg deleted file mode 100644 index b482b359f..000000000 Binary files a/docs/zh_CN/images/models/lr_decay.jpeg and /dev/null differ diff --git a/docs/zh_CN/images/models/mobile_arm_storage.png b/docs/zh_CN/images/models/mobile_arm_storage.png deleted file mode 100644 index 07e1f4f3f..000000000 Binary files a/docs/zh_CN/images/models/mobile_arm_storage.png and /dev/null differ diff --git a/docs/zh_CN/images/models/mobile_arm_top1.png b/docs/zh_CN/images/models/mobile_arm_top1.png deleted file mode 100644 index 87afa98ef..000000000 Binary files a/docs/zh_CN/images/models/mobile_arm_top1.png and /dev/null differ diff --git a/docs/zh_CN/images/paddlepaddle.jpg b/docs/zh_CN/images/paddlepaddle.jpg deleted file mode 100644 index da4cfb03e..000000000 Binary files a/docs/zh_CN/images/paddlepaddle.jpg and /dev/null differ diff --git a/docs/zh_CN/images/product/aliproduct.png b/docs/zh_CN/images/product/aliproduct.png deleted file mode 100644 index b57f96cee..000000000 Binary files a/docs/zh_CN/images/product/aliproduct.png and /dev/null differ diff --git a/docs/zh_CN/images/product/inshop.png b/docs/zh_CN/images/product/inshop.png deleted file mode 100644 index e874fdb8e..000000000 Binary files a/docs/zh_CN/images/product/inshop.png and /dev/null differ diff --git a/docs/zh_CN/images/qq_group.png b/docs/zh_CN/images/qq_group.png deleted file mode 100644 index dad54c1e8..000000000 Binary files a/docs/zh_CN/images/qq_group.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/Examples-Flower-102.png b/docs/zh_CN/images/quick_start/Examples-Flower-102.png deleted file mode 100644 index 28adc5a7f..000000000 Binary files a/docs/zh_CN/images/quick_start/Examples-Flower-102.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/all_acc.png b/docs/zh_CN/images/quick_start/all_acc.png deleted file mode 100644 index cf9938c4a..000000000 Binary files a/docs/zh_CN/images/quick_start/all_acc.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/001_fork.png b/docs/zh_CN/images/quick_start/community/001_fork.png deleted file mode 100644 index a61038159..000000000 Binary files a/docs/zh_CN/images/quick_start/community/001_fork.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/002_clone.png b/docs/zh_CN/images/quick_start/community/002_clone.png deleted file mode 100644 index f62263455..000000000 Binary files a/docs/zh_CN/images/quick_start/community/002_clone.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/003_precommit_pass.png b/docs/zh_CN/images/quick_start/community/003_precommit_pass.png deleted file mode 100644 index 067fb75dd..000000000 Binary files a/docs/zh_CN/images/quick_start/community/003_precommit_pass.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/004_create_pr.png b/docs/zh_CN/images/quick_start/community/004_create_pr.png deleted file mode 100644 index 92766299f..000000000 Binary files a/docs/zh_CN/images/quick_start/community/004_create_pr.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/code_framework.png b/docs/zh_CN/images/quick_start/community/code_framework.png deleted file mode 100644 index bc738dc1b..000000000 Binary files a/docs/zh_CN/images/quick_start/community/code_framework.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/community/train_framework.png b/docs/zh_CN/images/quick_start/community/train_framework.png deleted file mode 100644 index 3501e026b..000000000 Binary files a/docs/zh_CN/images/quick_start/community/train_framework.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/flowers102/image_06739.jpg b/docs/zh_CN/images/quick_start/flowers102/image_06739.jpg deleted file mode 100755 index 19a1ed6a4..000000000 Binary files a/docs/zh_CN/images/quick_start/flowers102/image_06739.jpg and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/flowers102/image_06767.jpg b/docs/zh_CN/images/quick_start/flowers102/image_06767.jpg deleted file mode 100755 index 28fd2dbf7..000000000 Binary files a/docs/zh_CN/images/quick_start/flowers102/image_06767.jpg and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/flowers102/image_06773.jpg b/docs/zh_CN/images/quick_start/flowers102/image_06773.jpg deleted file mode 100755 index f4fde5524..000000000 Binary files a/docs/zh_CN/images/quick_start/flowers102/image_06773.jpg and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/r50_vd_acc.png b/docs/zh_CN/images/quick_start/r50_vd_acc.png deleted file mode 100644 index 3e28b3ae2..000000000 Binary files a/docs/zh_CN/images/quick_start/r50_vd_acc.png and /dev/null differ diff --git a/docs/zh_CN/images/quick_start/r50_vd_pretrained_acc.png b/docs/zh_CN/images/quick_start/r50_vd_pretrained_acc.png deleted file mode 100644 index 2d7704963..000000000 Binary files a/docs/zh_CN/images/quick_start/r50_vd_pretrained_acc.png and /dev/null differ diff --git a/docs/zh_CN/images/recognition.gif b/docs/zh_CN/images/recognition.gif deleted file mode 100644 index cbe150b00..000000000 Binary files a/docs/zh_CN/images/recognition.gif and /dev/null differ diff --git a/docs/zh_CN/images/recognition/logo_demo/gallery/logo_gallery_demo.png b/docs/zh_CN/images/recognition/logo_demo/gallery/logo_gallery_demo.png deleted file mode 100644 index d74846305..000000000 Binary files a/docs/zh_CN/images/recognition/logo_demo/gallery/logo_gallery_demo.png and /dev/null differ diff --git a/docs/zh_CN/images/recognition/logo_demo/query/logo_auxx-1.jpg b/docs/zh_CN/images/recognition/logo_demo/query/logo_auxx-1.jpg deleted file mode 100644 index 90a9215d4..000000000 Binary files a/docs/zh_CN/images/recognition/logo_demo/query/logo_auxx-1.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/logo_demo/query/logo_cola.jpg b/docs/zh_CN/images/recognition/logo_demo/query/logo_cola.jpg deleted file mode 100644 index 97d0374dc..000000000 Binary files a/docs/zh_CN/images/recognition/logo_demo/query/logo_cola.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/001.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/001.jpg deleted file mode 100644 index 586aef200..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/001.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/002.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/002.jpg deleted file mode 100644 index 8d4285d8b..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/002.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/003.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/003.jpg deleted file mode 100644 index f4efa2b1e..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/003.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/004.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/004.jpg deleted file mode 100644 index 017aa82aa..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/004.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/005.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/005.jpg deleted file mode 100644 index e7d6f8825..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/005.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/006.jpg b/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/006.jpg deleted file mode 100644 index 36a8e5de7..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/gallery/anmuxi/006.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/query/anmuxi.jpg b/docs/zh_CN/images/recognition/product_demo/query/anmuxi.jpg deleted file mode 100644 index 735ea5a4c..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/query/anmuxi.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/query/daoxiangcunjinzhubing_6.jpg b/docs/zh_CN/images/recognition/product_demo/query/daoxiangcunjinzhubing_6.jpg deleted file mode 100644 index fc64a9531..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/query/daoxiangcunjinzhubing_6.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/result/anmuxi.jpg b/docs/zh_CN/images/recognition/product_demo/result/anmuxi.jpg deleted file mode 100644 index 4b219e2b8..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/result/anmuxi.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/result/anmuxi_en.jpg b/docs/zh_CN/images/recognition/product_demo/result/anmuxi_en.jpg deleted file mode 100644 index b755a5faa..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/result/anmuxi_en.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6.jpg b/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6.jpg deleted file mode 100644 index 645ad6c87..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6_en.jpg b/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6_en.jpg deleted file mode 100644 index 102616b70..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/result/daoxiangcunjinzhubing_6_en.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/wangzai.jpg b/docs/zh_CN/images/recognition/product_demo/wangzai.jpg deleted file mode 100644 index fe7aa77d9..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/wangzai.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/product_demo/wangzai_det_result.jpg b/docs/zh_CN/images/recognition/product_demo/wangzai_det_result.jpg deleted file mode 100644 index e7552d122..000000000 Binary files a/docs/zh_CN/images/recognition/product_demo/wangzai_det_result.jpg and /dev/null differ diff --git a/docs/zh_CN/images/recognition/rec_pipeline.png b/docs/zh_CN/images/recognition/rec_pipeline.png deleted file mode 100644 index f6a95e668..000000000 Binary files a/docs/zh_CN/images/recognition/rec_pipeline.png and /dev/null differ diff --git a/docs/zh_CN/images/recognition/vehicle/CompCars.png b/docs/zh_CN/images/recognition/vehicle/CompCars.png deleted file mode 100644 index 021d8c4d2..000000000 Binary files a/docs/zh_CN/images/recognition/vehicle/CompCars.png and /dev/null differ diff --git a/docs/zh_CN/images/recognition/vehicle/cars.JPG b/docs/zh_CN/images/recognition/vehicle/cars.JPG deleted file mode 100644 index bb6024641..000000000 Binary files a/docs/zh_CN/images/recognition/vehicle/cars.JPG and /dev/null differ diff --git a/docs/zh_CN/images/recognition_en.gif b/docs/zh_CN/images/recognition_en.gif deleted file mode 100644 index 0adffead2..000000000 Binary files a/docs/zh_CN/images/recognition_en.gif and /dev/null differ diff --git a/docs/zh_CN/images/structure.png b/docs/zh_CN/images/structure.png deleted file mode 100644 index 30081c53e..000000000 Binary files a/docs/zh_CN/images/structure.png and /dev/null differ diff --git a/docs/zh_CN/images/whl/demo.jpg b/docs/zh_CN/images/whl/demo.jpg deleted file mode 100644 index cc7bff445..000000000 Binary files a/docs/zh_CN/images/whl/demo.jpg and /dev/null differ diff --git a/docs/zh_CN/images/wx_group.png b/docs/zh_CN/images/wx_group.png deleted file mode 100644 index 7471d1607..000000000 Binary files a/docs/zh_CN/images/wx_group.png and /dev/null differ diff --git a/docs/zh_CN/introduction/more_demo/more_demo.md b/docs/zh_CN/introduction/more_demo/more_demo.md index 3ffc58ef9..97732e3f2 100644 --- a/docs/zh_CN/introduction/more_demo/more_demo.md +++ b/docs/zh_CN/introduction/more_demo/more_demo.md @@ -28,7 +28,7 @@
-[更多效果图](../../images/recognition/more_demo_images/logo.md) +[更多效果图](logo.md) - 车辆识别 diff --git a/docs/zh_CN/models/DLA.md b/docs/zh_CN/models/DLA.md index a817b13f6..3612b9ed4 100644 --- a/docs/zh_CN/models/DLA.md +++ b/docs/zh_CN/models/DLA.md @@ -3,6 +3,7 @@ ## 目录 * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于 V100 GPU 的预测速度](#3) @@ -25,4 +26,20 @@ DLA(Deep Layer Aggregation)。 视觉识别需要丰富的表示形式,其范 | DLA102 | 33.3 | 7.2 | 78.93 | 94.52 | | DLA102x | 26.4 | 5.9 | 78.10 | 94.00 | | DLA102x2 | 41.4 | 9.3 | 78.85 | 94.45 | -| DLA169 | 53.5 | 11.6 | 78.09 | 94.09 | \ No newline at end of file +| DLA169 | 53.5 | 11.6 | 78.09 | 94.09 | + + + +## 3. 基于 V100 GPU 的预测速度 + +| 模型 | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| DLA102 | 224 | 256 | 4.95 | 8.08 | 12.40 | +| DLA102x2 | 224 | 256 | 19.58 | 23.97 | 31.37 | +| DLA102x | 224 | 256 | 11.12 | 15.60 | 20.37 | +| DLA169 | 224 | 256 | 7.70 | 12.25 | 18.90 | +| DLA34 | 224 | 256 | 1.83 | 3.37 | 5.98 | +| DLA46_c | 224 | 256 | 1.06 | 2.08 | 3.23 | +| DLA60 | 224 | 256 | 2.78 | 5.36 | 8.29 | +| DLA60x_c | 224 | 256 | 1.79 | 3.68 | 5.19 | +| DLA60x | 224 | 256 | 5.98 | 9.24 | 12.52 | \ No newline at end of file diff --git a/docs/zh_CN/models/DPN_DenseNet.md b/docs/zh_CN/models/DPN_DenseNet.md index 1365f6ac6..3a8a00232 100644 --- a/docs/zh_CN/models/DPN_DenseNet.md +++ b/docs/zh_CN/models/DPN_DenseNet.md @@ -12,7 +12,7 @@ ## 1. 概述 DenseNet 是 2017 年 CVPR best paper 提出的一种新的网络结构,该网络设计了一种新的跨层连接的 block,即 dense-block。相比 ResNet 中的 bottleneck,dense-block 设计了一个更激进的密集连接机制,即互相连接所有的层,每个层都会接受其前面所有层作为其额外的输入。DenseNet 将所有的 dense-block 堆叠,组合成了一个密集连接型网络。密集的连接方式使得 DenseNe 更容易进行梯度的反向传播,使得网络更容易训练。 DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPS 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。 - + 该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。 ![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png) @@ -48,18 +48,18 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|-------------|-----------|-------------------|--------------------------| -| DenseNet121 | 224 | 256 | 4.371 | -| DenseNet161 | 224 | 256 | 8.863 | -| DenseNet169 | 224 | 256 | 6.391 | -| DenseNet201 | 224 | 256 | 8.173 | -| DenseNet264 | 224 | 256 | 11.942 | -| DPN68 | 224 | 256 | 11.805 | -| DPN92 | 224 | 256 | 17.840 | -| DPN98 | 224 | 256 | 21.057 | -| DPN107 | 224 | 256 | 28.685 | -| DPN131 | 224 | 256 | 28.083 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|-------------|-----------|-------------------|-------------------|-------------------|-------------------| +| DenseNet121 | 224 | 256 | 3.40 | 6.94 | 9.17 | +| DenseNet161 | 224 | 256 | 7.06 | 14.37 | 19.55 | +| DenseNet169 | 224 | 256 | 5.00 | 10.29 | 12.84 | +| DenseNet201 | 224 | 256 | 6.38 | 13.72 | 17.17 | +| DenseNet264 | 224 | 256 | 9.34 | 20.95 | 25.41 | +| DPN68 | 224 | 256 | 8.18 | 11.40 | 14.82 | +| DPN92 | 224 | 256 | 12.48 | 20.04 | 25.10 | +| DPN98 | 224 | 256 | 14.70 | 25.55 | 35.12 | +| DPN107 | 224 | 256 | 19.46 | 35.62 | 50.22 | +| DPN131 | 224 | 256 | 19.64 | 34.60 | 47.42 | diff --git a/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md b/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md index 5ce43b7d7..dfe68ace2 100644 --- a/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md +++ b/docs/zh_CN/models/EfficientNet_and_ResNeXt101_wsl.md @@ -50,22 +50,22 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|-------------------------------|-----------|-------------------|--------------------------| -| ResNeXt101_
32x8d_wsl | 224 | 256 | 19.127 | -| ResNeXt101_
32x16d_wsl | 224 | 256 | 23.629 | -| ResNeXt101_
32x32d_wsl | 224 | 256 | 40.214 | -| ResNeXt101_
32x48d_wsl | 224 | 256 | 59.714 | -| Fix_ResNeXt101_
32x48d_wsl | 320 | 320 | 82.431 | -| EfficientNetB0 | 224 | 256 | 2.449 | -| EfficientNetB1 | 240 | 272 | 3.547 | -| EfficientNetB2 | 260 | 292 | 3.908 | -| EfficientNetB3 | 300 | 332 | 5.145 | -| EfficientNetB4 | 380 | 412 | 7.609 | -| EfficientNetB5 | 456 | 488 | 12.078 | -| EfficientNetB6 | 528 | 560 | 18.381 | -| EfficientNetB7 | 600 | 632 | 27.817 | -| EfficientNetB0_
small | 224 | 256 | 1.692 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|-------------------------------|-----------|-------------------|-------------------------------|-------------------------------|-------------------------------| +| ResNeXt101_
32x8d_wsl | 224 | 256 | 13.55 | 23.39 | 36.18 | +| ResNeXt101_
32x16d_wsl | 224 | 256 | 21.96 | 38.35 | 63.29 | +| ResNeXt101_
32x32d_wsl | 224 | 256 | 37.28 | 76.50 | 121.56 | +| ResNeXt101_
32x48d_wsl | 224 | 256 | 55.07 | 124.39 | 205.01 | +| Fix_ResNeXt101_
32x48d_wsl | 320 | 320 | 55.01 | 122.63 | 204.66 | +| EfficientNetB0 | 224 | 256 | 1.96 | 3.71 | 5.56 | +| EfficientNetB1 | 240 | 272 | 2.88 | 5.40 | 7.63 | +| EfficientNetB2 | 260 | 292 | 3.26 | 6.20 | 9.17 | +| EfficientNetB3 | 300 | 332 | 4.52 | 8.85 | 13.54 | +| EfficientNetB4 | 380 | 412 | 6.78 | 15.47 | 24.95 | +| EfficientNetB5 | 456 | 488 | 10.97 | 27.24 | 45.93 | +| EfficientNetB6 | 528 | 560 | 17.09 | 43.32 | 76.90 | +| EfficientNetB7 | 600 | 632 | 25.91 | 71.23 | 128.20 | +| EfficientNetB0_
small | 224 | 256 | 1.24 | 2.59 | 3.92 | diff --git a/docs/zh_CN/models/HRNet.md b/docs/zh_CN/models/HRNet.md index 77f745ef6..179c94617 100644 --- a/docs/zh_CN/models/HRNet.md +++ b/docs/zh_CN/models/HRNet.md @@ -43,17 +43,17 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|-------------|-----------|-------------------|--------------------------| -| HRNet_W18_C | 224 | 256 | 7.368 | -| HRNet_W18_C_ssld | 224 | 256 | 7.368 | -| HRNet_W30_C | 224 | 256 | 9.402 | -| HRNet_W32_C | 224 | 256 | 9.467 | -| HRNet_W40_C | 224 | 256 | 10.739 | -| HRNet_W44_C | 224 | 256 | 11.497 | -| HRNet_W48_C | 224 | 256 | 12.165 | -| HRNet_W48_C_ssld | 224 | 256 | 12.165 | -| HRNet_W64_C | 224 | 256 | 15.003 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|-------------|-----------|-------------------|-------------------|-------------------|-------------------| +| HRNet_W18_C | 224 | 256 | 6.66 | 8.94 | 11.95 | +| HRNet_W18_C_ssld | 224 | 256 | 6.66 | 8.92 | 11.93 | +| HRNet_W30_C | 224 | 256 | 8.61 | 11.40 | 15.23 | +| HRNet_W32_C | 224 | 256 | 8.54 | 11.58 | 15.57 | +| HRNet_W40_C | 224 | 256 | 9.83 | 15.02 | 20.92 | +| HRNet_W44_C | 224 | 256 | 10.62 | 16.18 | 25.92 | +| HRNet_W48_C | 224 | 256 | 11.07 | 17.06 | 27.28 | +| HRNet_W48_C_ssld | 224 | 256 | 11.09 | 17.04 | 27.28 | +| HRNet_W64_C | 224 | 256 | 13.82 | 21.15 | 35.51 | diff --git a/docs/zh_CN/models/HarDNet.md b/docs/zh_CN/models/HarDNet.md index 01f6f374c..3f75fad7b 100644 --- a/docs/zh_CN/models/HarDNet.md +++ b/docs/zh_CN/models/HarDNet.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于 V100 GPU 的预测速度](#3) ## 1. 概述 @@ -20,3 +21,15 @@ HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种 | HarDNet85 | 36.7 | 9.1 | 77.44 | 93.55 | | HarDNet39_ds | 3.5 | 0.4 | 71.33 | 89.98 | | HarDNet68_ds | 4.2 | 0.8 | 73.62 | 91.52 | + + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| HarDNet68 | 224 | 256 | 3.58 | 8.53 | 11.58 | +| HarDNet85 | 224 | 256 | 6.24 | 14.85 | 20.57 | +| HarDNet39_ds | 224 | 256 | 1.40 | 2.30 | 3.33 | +| HarDNet68_ds | 224 | 256 | 2.26 | 3.34 | 5.06 | + diff --git a/docs/zh_CN/models/Inception.md b/docs/zh_CN/models/Inception.md index 5b4b789e6..bed40b3e4 100644 --- a/docs/zh_CN/models/Inception.md +++ b/docs/zh_CN/models/Inception.md @@ -53,15 +53,15 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|------------------------|-----------|-------------------|--------------------------| -| GoogLeNet | 224 | 256 | 1.807 | -| Xception41 | 299 | 320 | 3.972 | -| Xception41_
deeplab | 299 | 320 | 4.408 | -| Xception65 | 299 | 320 | 6.174 | -| Xception65_
deeplab | 299 | 320 | 6.464 | -| Xception71 | 299 | 320 | 6.782 | -| InceptionV4 | 299 | 320 | 11.141 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|------------------------|-----------|-------------------|------------------------|------------------------|------------------------| +| GoogLeNet | 224 | 256 | 1.41 | 3.25 | 5.00 | +| Xception41 | 299 | 320 | 3.58 | 8.76 | 16.61 | +| Xception41_
deeplab | 299 | 320 | 3.81 | 9.16 | 17.20 | +| Xception65 | 299 | 320 | 5.45 | 12.78 | 24.53 | +| Xception65_
deeplab | 299 | 320 | 5.65 | 13.08 | 24.61 | +| Xception71 | 299 | 320 | 6.19 | 15.34 | 29.21 | +| InceptionV4 | 299 | 320 | 8.93 | 15.17 | 21.56 | diff --git a/docs/zh_CN/models/MixNet.md b/docs/zh_CN/models/MixNet.md index ab7878027..eaf45d3d0 100644 --- a/docs/zh_CN/models/MixNet.md +++ b/docs/zh_CN/models/MixNet.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于 V100 GPU 的预测速度](#3) @@ -26,4 +27,14 @@ MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在 | MixNet_M | 77.67 | 93.64 | 77.0 | 357.119 | 5.065 | | MixNet_L | 78.60 | 94.37 | 78.9 | 579.017 | 7.384 | + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| -------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| MixNet_S | 224 | 256 | 2.31 | 3.63 | 5.20 | +| MixNet_M | 224 | 256 | 2.84 | 4.60 | 6.62 | +| MixNet_L | 224 | 256 | 3.16 | 5.55 | 8.03 | + 关于 Inference speed 等信息,敬请期待。 diff --git a/docs/zh_CN/models/Mobile.md b/docs/zh_CN/models/Mobile.md index 794015246..c4cede555 100644 --- a/docs/zh_CN/models/Mobile.md +++ b/docs/zh_CN/models/Mobile.md @@ -5,7 +5,8 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) * [3. 基于 SD855 的预测速度和存储大小](#3) -* [4. 基于 T4 GPU 的预测速度](#4) +* [4. 基于 V100 GPU 的预测速度](#4) +* [5. 基于 T4 GPU 的预测速度](#5) @@ -79,84 +80,128 @@ GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构, ## 3. 基于 SD855 的预测速度和存储大小 -| Models | Batch Size=1(ms) | Storage Size(M) | -|:--:|:--:|:--:| -| MobileNetV1_x0_25 | 3.220 | 1.900 | -| MobileNetV1_x0_5 | 9.580 | 5.200 | -| MobileNetV1_x0_75 | 19.436 | 10.000 | -| MobileNetV1 | 32.523 | 16.000 | -| MobileNetV1_ssld | 32.523 | 16.000 | -| MobileNetV2_x0_25 | 3.799 | 6.100 | -| MobileNetV2_x0_5 | 8.702 | 7.800 | -| MobileNetV2_x0_75 | 15.531 | 10.000 | -| MobileNetV2 | 23.318 | 14.000 | -| MobileNetV2_x1_5 | 45.624 | 26.000 | -| MobileNetV2_x2_0 | 74.292 | 43.000 | -| MobileNetV2_ssld | 23.318 | 14.000 | -| MobileNetV3_large_x1_25 | 28.218 | 29.000 | -| MobileNetV3_large_x1_0 | 19.308 | 21.000 | -| MobileNetV3_large_x0_75 | 13.565 | 16.000 | -| MobileNetV3_large_x0_5 | 7.493 | 11.000 | -| MobileNetV3_large_x0_35 | 5.137 | 8.600 | -| MobileNetV3_small_x1_25 | 9.275 | 14.000 | -| MobileNetV3_small_x1_0 | 6.546 | 12.000 | -| MobileNetV3_small_x0_75 | 5.284 | 9.600 | -| MobileNetV3_small_x0_5 | 3.352 | 7.800 | -| MobileNetV3_small_x0_35 | 2.635 | 6.900 | -| MobileNetV3_small_x0_35_ssld | 2.635 | 6.900 | -| MobileNetV3_large_x1_0_ssld | 19.308 | 21.000 | -| MobileNetV3_large_x1_0_ssld_int8 | 14.395 | 10.000 | -| MobileNetV3_small_x1_0_ssld | 6.546 | 12.000 | -| ShuffleNetV2 | 10.941 | 9.000 | -| ShuffleNetV2_x0_25 | 2.329 | 2.700 | -| ShuffleNetV2_x0_33 | 2.643 | 2.800 | -| ShuffleNetV2_x0_5 | 4.261 | 5.600 | -| ShuffleNetV2_x1_5 | 19.352 | 14.000 | -| ShuffleNetV2_x2_0 | 34.770 | 28.000 | -| ShuffleNetV2_swish | 16.023 | 9.100 | -| GhostNet_x0_5 | 5.714 | 10.000 | -| GhostNet_x1_0 | 13.558 | 20.000 | -| GhostNet_x1_3 | 19.982 | 29.000 | -| GhostNet_x1_3_ssld | 19.982 | 29.000 | +| Models | SD855 time(ms)
bs=1, thread=1 | SD855 time(ms)
bs=1, thread=2 | SD855 time(ms)
bs=1, thread=4 | Storage Size(M) | +|:--:|----|----|----|----| +| MobileNetV1_x0_25 | 2.88 | 1.82 | 1.26 | 1.900 | +| MobileNetV1_x0_5 | 8.74 | 5.26 | 3.09 | 5.200 | +| MobileNetV1_x0_75 | 17.84 | 10.61 | 6.21 | 10.000 | +| MobileNetV1 | 30.24 | 17.86 | 10.30 | 16.000 | +| MobileNetV1_ssld | 30.19 | 17.85 | 10.23 | 16.000 | +| MobileNetV2_x0_25 | 3.46 | 2.51 | 2.03 | 6.100 | +| MobileNetV2_x0_5 | 7.69 | 4.92 | 3.57 | 7.800 | +| MobileNetV2_x0_75 | 13.69 | 8.60 | 5.82 | 10.000 | +| MobileNetV2 | 20.74 | 12.71 | 8.10 | 14.000 | +| MobileNetV2_x1_5 | 40.79 | 24.49 | 15.50 | 26.000 | +| MobileNetV2_x2_0 | 67.50 | 40.03 | 25.55 | 43.000 | +| MobileNetV2_ssld | 20.71 | 12.70 | 8.06 | 14.000 | +| MobileNetV3_large_x1_25 | 24.52 | 14.76 | 9.89 | 29.000 | +| MobileNetV3_large_x1_0 | 16.55 | 10.09 | 6.84 | 21.000 | +| MobileNetV3_large_x0_75 | 11.53 | 7.06 | 4.94 | 16.000 | +| MobileNetV3_large_x0_5 | 6.50 | 4.22 | 3.15 | 11.000 | +| MobileNetV3_large_x0_35 | 4.43 | 3.11 | 2.41 | 8.600 | +| MobileNetV3_small_x1_25 | 7.88 | 4.91 | 3.45 | 14.000 | +| MobileNetV3_small_x1_0 | 5.63 | 3.65 | 2.60 | 12.000 | +| MobileNetV3_small_x0_75 | 4.50 | 2.96 | 2.19 | 9.600 | +| MobileNetV3_small_x0_5 | 2.89 | 2.04 | 1.62 | 7.800 | +| MobileNetV3_small_x0_35 | 2.23 | 1.66 | 1.43 | 6.900 | +| MobileNetV3_small_x0_35_ssld | | | | 6.900 | +| MobileNetV3_large_x1_0_ssld | 16.56 | 10.10 | 6.86 | 21.000 | +| MobileNetV3_large_x1_0_ssld_int8 | | | | 10.000 | +| MobileNetV3_small_x1_0_ssld | 5.64 | 3.67 | 2.61 | 12.000 | +| ShuffleNetV2 | 9.72 | 5.97 | 4.13 | 9.000 | +| ShuffleNetV2_x0_25 | 1.94 | 1.53 | 1.43 | 2.700 | +| ShuffleNetV2_x0_33 | 2.23 | 1.70 | 1.79 | 2.800 | +| ShuffleNetV2_x0_5 | 3.67 | 2.63 | 2.06 | 5.600 | +| ShuffleNetV2_x1_5 | 17.21 | 10.56 | 6.81 | 14.000 | +| ShuffleNetV2_x2_0 | 31.21 | 18.98 | 11.65 | 28.000 | +| ShuffleNetV2_swish | 31.21 | 9.06 | 5.74 | 9.100 | +| GhostNet_x0_5 | 5.28 | 3.95 | 3.29 | 10.000 | +| GhostNet_x1_0 | 12.89 | 8.66 | 6.72 | 20.000 | +| GhostNet_x1_3 | 19.16 | 12.25 | 9.40 | 29.000 | +| GhostNet_x1_3_ssld | 19.16 | 17.85 | 10.18 | 29.000 | -## 4. 基于 T4 GPU 的预测速度 +## 4. 基于 V100 GPU 的预测速度 -| Models | FP16
Batch Size=1
(ms) | FP16
Batch Size=4
(ms) | FP16
Batch Size=8
(ms) | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | -|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| -| MobileNetV1_x0_25 | 0.68422 | 1.13021 | 1.72095 | 0.67274 | 1.226 | 1.84096 | -| MobileNetV1_x0_5 | 0.69326 | 1.09027 | 1.84746 | 0.69947 | 1.43045 | 2.39353 | -| MobileNetV1_x0_75 | 0.6793 | 1.29524 | 2.15495 | 0.79844 | 1.86205 | 3.064 | -| MobileNetV1 | 0.71942 | 1.45018 | 2.47953 | 0.91164 | 2.26871 | 3.90797 | -| MobileNetV1_ssld | 0.71942 | 1.45018 | 2.47953 | 0.91164 | 2.26871 | 3.90797 | -| MobileNetV2_x0_25 | 2.85399 | 3.62405 | 4.29952 | 2.81989 | 3.52695 | 4.2432 | -| MobileNetV2_x0_5 | 2.84258 | 3.1511 | 4.10267 | 2.80264 | 3.65284 | 4.31737 | -| MobileNetV2_x0_75 | 2.82183 | 3.27622 | 4.98161 | 2.86538 | 3.55198 | 5.10678 | -| MobileNetV2 | 2.78603 | 3.71982 | 6.27879 | 2.62398 | 3.54429 | 6.41178 | -| MobileNetV2_x1_5 | 2.81852 | 4.87434 | 8.97934 | 2.79398 | 5.30149 | 9.30899 | -| MobileNetV2_x2_0 | 3.65197 | 6.32329 | 11.644 | 3.29788 | 7.08644 | 12.45375 | -| MobileNetV2_ssld | 2.78603 | 3.71982 | 6.27879 | 2.62398 | 3.54429 | 6.41178 | -| MobileNetV3_large_x1_25 | 2.34387 | 3.16103 | 4.79742 | 2.35117 | 3.44903 | 5.45658 | -| MobileNetV3_large_x1_0 | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 | -| MobileNetV3_large_x0_75 | 2.1058 | 2.61426 | 3.61021 | 2.0006 | 2.56987 | 3.78005 | -| MobileNetV3_large_x0_5 | 2.06934 | 2.77341 | 3.35313 | 2.11199 | 2.88172 | 3.19029 | -| MobileNetV3_large_x0_35 | 2.14965 | 2.7868 | 3.36145 | 1.9041 | 2.62951 | 3.26036 | -| MobileNetV3_small_x1_25 | 2.06817 | 2.90193 | 3.5245 | 2.02916 | 2.91866 | 3.34528 | -| MobileNetV3_small_x1_0 | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 | -| MobileNetV3_small_x0_75 | 1.80617 | 2.64646 | 3.24513 | 1.93697 | 2.64285 | 3.32797 | -| MobileNetV3_small_x0_5 | 1.95001 | 2.74014 | 3.39485 | 1.88406 | 2.99601 | 3.3908 | -| MobileNetV3_small_x0_35 | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 | -| MobileNetV3_small_x0_35_ssld | 2.10683 | 2.94267 | 3.44254 | 1.94427 | 2.94116 | 3.41082 | -| MobileNetV3_large_x1_0_ssld | 2.20149 | 3.08423 | 4.07779 | 2.04296 | 2.9322 | 4.53184 | -| MobileNetV3_small_x1_0_ssld | 1.73933 | 2.59478 | 3.40276 | 1.74527 | 2.63565 | 3.28124 | -| ShuffleNetV2 | 1.95064 | 2.15928 | 2.97169 | 1.89436 | 2.26339 | 3.17615 | -| ShuffleNetV2_x0_25 | 1.43242 | 2.38172 | 2.96768 | 1.48698 | 2.29085 | 2.90284 | -| ShuffleNetV2_x0_33 | 1.69008 | 2.65706 | 2.97373 | 1.75526 | 2.85557 | 3.09688 | -| ShuffleNetV2_x0_5 | 1.48073 | 2.28174 | 2.85436 | 1.59055 | 2.18708 | 3.09141 | -| ShuffleNetV2_x1_5 | 1.51054 | 2.4565 | 3.41738 | 1.45389 | 2.5203 | 3.99872 | -| ShuffleNetV2_x2_0 | 1.95616 | 2.44751 | 4.19173 | 2.15654 | 3.18247 | 5.46893 | -| ShuffleNetV2_swish | 2.50213 | 2.92881 | 3.474 | 2.5129 | 2.97422 | 3.69357 | -| GhostNet_x0_5 | 2.64492 | 3.48473 | 4.48844 | 2.36115 | 3.52802 | 3.89444 | -| GhostNet_x1_0 | 2.63120 | 3.92065 | 4.48296 | 2.57042 | 3.56296 | 4.85524 | -| GhostNet_x1_3 | 2.89715 | 3.80329 | 4.81661 | 2.81810 | 3.72071 | 5.92269 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| -------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| MobileNetV1_x0_25 | 224 | 256 | 0.47 | 0.93 | 1.39 | +| MobileNetV1_x0_5 | 224 | 256 | 0.48 | 1.09 | 1.69 | +| MobileNetV1_x0_75 | 224 | 256 | 0.55 | 1.34 | 2.03 | +| MobileNetV1 | 224 | 256 | 0.64 | 1.57 | 2.48 | +| MobileNetV1_ssld | 224 | 256 | 0.66 | 1.59 | 2.58 | +| MobileNetV2_x0_25 | 224 | 256 | 0.83 | 1.17 | 1.78 | +| MobileNetV2_x0_5 | 224 | 256 | 0.84 | 1.45 | 2.04 | +| MobileNetV2_x0_75 | 224 | 256 | 0.96 | 1.62 | 2.53 | +| MobileNetV2 | 224 | 256 | 1.02 | 1.93 | 2.89 | +| MobileNetV2_x1_5 | 224 | 256 | 1.32 | 2.58 | 4.14 | +| MobileNetV2_x2_0 | 224 | 256 | 1.57 | 3.13 | 4.76 | +| MobileNetV2_ssld | 224 | 256 | 1.01 | 1.97 | 2.84 | +| MobileNetV3_large_x1_25 | 224 | 256 | 1.75 | 2.87 | 4.23 | +| MobileNetV3_large_x1_0 | 224 | 256 | 1.37 | 2.67 | 3.46 | +| MobileNetV3_large_x0_75 | 224 | 256 | 1.37 | 2.23 | 3.17 | +| MobileNetV3_large_x0_5 | 224 | 256 | 1.10 | 1.85 | 2.69 | +| MobileNetV3_large_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 | +| MobileNetV3_small_x1_25 | 224 | 256 | 1.20 | 2.04 | 2.64 | +| MobileNetV3_small_x1_0 | 224 | 256 | 1.03 | 1.76 | 2.50 | +| MobileNetV3_small_x0_75 | 224 | 256 | 1.04 | 1.71 | 2.37 | +| MobileNetV3_small_x0_5 | 224 | 256 | 1.01 | 1.49 | 2.01 | +| MobileNetV3_small_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 | +| MobileNetV3_small_x0_35_ssld | 224 | 256 | | | | +| MobileNetV3_large_x1_0_ssld | 224 | 256 | 1.35 | 2.47 | 3.72 | +| MobileNetV3_large_x1_0_ssld_int8 | 224 | 256 | | | | +| MobileNetV3_small_x1_0_ssld | 224 | 256 | 1.06 | 1.89 | 2.48 | +| ShuffleNetV2 | 224 | 256 | 1.05 | 1.76 | 2.37 | +| ShuffleNetV2_x0_25 | 224 | 256 | 0.92 | 1.27 | 1.73 | +| ShuffleNetV2_x0_33 | 224 | 256 | 0.91 | 1.29 | 1.81 | +| ShuffleNetV2_x0_5 | 224 | 256 | 0.89 | 1.43 | 1.94 | +| ShuffleNetV2_x1_5 | 224 | 256 | 0.93 | 1.99 | 2.85 | +| ShuffleNetV2_x2_0 | 224 | 256 | 1.45 | 2.70 | 3.35 | +| ShuffleNetV2_swish | 224 | 256 | 1.43 | 1.93 | 2.69 | +| GhostNet_x0_5 | 224 | 256 | 1.66 | 2.24 | 2.73 | +| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 | +| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 | +| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 | + + + +## 5. 基于 T4 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| +| MobileNetV1_x0_25 | 224 | 256 | 0.47 | 0.93 | 1.39 | +| MobileNetV1_x0_5 | 224 | 256 | 0.48 | 1.09 | 1.69 | +| MobileNetV1_x0_75 | 224 | 256 | 0.55 | 1.34 | 2.03 | +| MobileNetV1 | 224 | 256 | 0.64 | 1.57 | 2.48 | +| MobileNetV1_ssld | 224 | 256 | 0.66 | 1.59 | 2.58 | +| MobileNetV2_x0_25 | 224 | 256 | 0.83 | 1.17 | 1.78 | +| MobileNetV2_x0_5 | 224 | 256 | 0.84 | 1.45 | 2.04 | +| MobileNetV2_x0_75 | 224 | 256 | 0.96 | 1.62 | 2.53 | +| MobileNetV2 | 224 | 256 | 1.02 | 1.93 | 2.89 | +| MobileNetV2_x1_5 | 224 | 256 | 1.32 | 2.58 | 4.14 | +| MobileNetV2_x2_0 | 224 | 256 | 1.57 | 3.13 | 4.76 | +| MobileNetV2_ssld | 224 | 256 | 1.01 | 1.97 | 2.84 | +| MobileNetV3_small_x0_35 | 224 | 256 | 1.01 | 1.44 | 1.92 | +| MobileNetV3_small_x0_5 | 224 | 256 | 1.01 | 1.49 | 2.01 | +| MobileNetV3_small_x0_75 | 224 | 256 | 1.04 | 1.71 | 2.37 | +| MobileNetV3_small_x1_0 | 224 | 256 | 1.03 | 1.76 | 2.50 | +| MobileNetV3_small_x1_25 | 224 | 256 | 1.20 | 2.04 | 2.64 | +| MobileNetV3_large_x0_35 | 224 | 256 | 1.10 | 1.74 | 2.34 | +| MobileNetV3_large_x0_5 | 224 | 256 | 1.10 | 1.85 | 2.69 | +| MobileNetV3_large_x0_75 | 224 | 256 | 1.37 | 2.23 | 3.17 | +| MobileNetV3_large_x1_0 | 224 | 256 | 1.37 | 2.67 | 3.46 | +| MobileNetV3_large_x1_25 | 224 | 256 | 1.75 | 2.87 | 4.23 | +| MobileNetV3_small_x1_0_ssld | 224 | 256 | 1.06 | 1.89 | 2.48 | +| MobileNetV3_large_x1_0_ssld | 224 | 256 | 1.35 | 2.47 | 3.72 | +| ShuffleNetV2_swish | 224 | 256 | 1.43 | 1.93 | 2.69 | +| ShuffleNetV2_x0_25 | 224 | 256 | 0.92 | 1.27 | 1.73 | +| ShuffleNetV2_x0_33 | 224 | 256 | 0.91 | 1.29 | 1.81 | +| ShuffleNetV2_x0_5 | 224 | 256 | 0.89 | 1.43 | 1.94 | +| ShuffleNetV2_x1_0 | 224 | 256 | 1.05 | 1.76 | 2.37 | +| ShuffleNetV2_x1_5 | 224 | 256 | 0.93 | 1.99 | 2.85 | +| ShuffleNetV2_x2_0 | 224 | 256 | 1.45 | 2.70 | 3.35 | +| GhostNet_x0_5 | 224 | 256 | 1.66 | 2.24 | 2.73 | +| GhostNet_x1_0 | 224 | 256 | 1.69 | 2.73 | 3.81 | +| GhostNet_x1_3 | 224 | 256 | 1.84 | 2.88 | 3.94 | +| GhostNet_x1_3_ssld | 224 | 256 | 1.85 | 3.17 | 4.29 | diff --git a/docs/zh_CN/models/Others.md b/docs/zh_CN/models/Others.md index 760a74ddf..ff43c4499 100644 --- a/docs/zh_CN/models/Others.md +++ b/docs/zh_CN/models/Others.md @@ -37,16 +37,16 @@ DarkNet53 是 YOLO 作者在论文设计的用于目标检测的 backbone,该 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|---------------------------|-----------|-------------------|----------------------| -| AlexNet | 224 | 256 | 1.176 | -| SqueezeNet1_0 | 224 | 256 | 0.860 | -| SqueezeNet1_1 | 224 | 256 | 0.763 | -| VGG11 | 224 | 256 | 1.867 | -| VGG13 | 224 | 256 | 2.148 | -| VGG16 | 224 | 256 | 2.616 | -| VGG19 | 224 | 256 | 3.076 | -| DarkNet53 | 256 | 256 | 3.139 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|---------------------------|-----------|-------------------|-------------------|-------------------|-------------------| +| AlexNet | 224 | 256 | 0.81 | 1.50 | 2.33 | +| SqueezeNet1_0 | 224 | 256 | 0.68 | 1.64 | 2.62 | +| SqueezeNet1_1 | 224 | 256 | 0.62 | 1.30 | 2.09 | +| VGG11 | 224 | 256 | 1.72 | 4.15 | 7.24 | +| VGG13 | 224 | 256 | 2.02 | 5.28 | 9.54 | +| VGG16 | 224 | 256 | 2.48 | 6.79 | 12.33 | +| VGG19 | 224 | 256 | 2.93 | 8.28 | 15.21 | +| DarkNet53 | 256 | 256 | 2.79 | 6.42 | 10.89 | diff --git a/docs/zh_CN/models/PP-LCNet.md b/docs/zh_CN/models/PP-LCNet.md index a233c0b44..1cdada9b8 100644 --- a/docs/zh_CN/models/PP-LCNet.md +++ b/docs/zh_CN/models/PP-LCNet.md @@ -14,10 +14,13 @@ - [4.1 图像分类](#4.1) - [4.2 目标检测](#4.2) - [4.3 语义分割](#4.3) -- [5. 总结](#5) -- [6. 引用](#6) +- [5. 基于 V100 GPU 的预测速度](#5) +- [6. 基于 SD855 的预测速度](#6) +- [7. 总结](#7) +- [8. 引用](#8) + ## 1. 摘要 在计算机视觉领域中,骨干网络的好坏直接影响到整个视觉任务的结果。在之前的一些工作中,相关的研究者普遍将 FLOPs 或者 Params 作为优化目的,但是在工业界真实落地的场景中,推理速度才是考量模型好坏的重要指标,然而,推理速度和准确性很难兼得。考虑到工业界有很多基于 Intel CPU 的应用,所以我们本次的工作旨在使骨干网络更好的适应 Intel CPU,从而得到一个速度更快、准确率更高的轻量级骨干网络,与此同时,目标检测、语义分割等下游视觉任务的性能也同样得到提升。 @@ -54,7 +57,7 @@ SE 模块是 SENet 提出的一种通道注意力机制,可以有效提升模 | 0000000000011 | 63.14 | 2.05 | | 1111111111111 | 64.27 | 3.80 | - + 最终,PP-LCNet 中的 SE 模块的位置选用了表格中第三行的方案。 @@ -106,7 +109,7 @@ BaseNet 经过以上四个方面的改进,得到了 PP-LCNet。下表进一步 | PP-LCNet-0.5x\* | 1.9 | 47 | 66.10 | 86.46 | 2.05 | | PP-LCNet-1.0x\* | 3.0 | 161 | 74.39 | 92.09 | 2.46 | | PP-LCNet-2.5x\* | 9.0 | 906 | 80.82 | 95.33 | 5.39 | - + 其中\*表示使用 SSLD 蒸馏后的模型。 与其他轻量级网络的性能对比: @@ -145,18 +148,49 @@ MobileNetV3-large-0.75x | 25.8 | 11.1 | | Backbone | mIoU(%) | Latency(ms) | |-------|-----------|----------| -MobileNetV3-large-0.5x | 55.42 | 135 | -PP-LCNet-0.5x | 58.36 | 82 | -MobileNetV3-large-0.75x | 64.53 | 151 | -PP-LCNet-1x | 66.03 | 96 | +|MobileNetV3-large-0.5x | 55.42 | 135 | +|PP-LCNet-0.5x | 58.36 | 82 | +|MobileNetV3-large-0.75x | 64.53 | 151 | +|PP-LCNet-1x | 66.03 | 96 | -## 5. 总结 + +## 5. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=1\4
(ms) | FP32
Batch Size=8
(ms) | +| ------------- | --------- | ----------------- | ---------------------------- | -------------------------------- | ------------------------------ | +| PPLCNet_x0_25 | 224 | 256 | 0.72 | 1.17 | 1.71 | +| PPLCNet_x0_35 | 224 | 256 | 0.69 | 1.21 | 1.82 | +| PPLCNet_x0_5 | 224 | 256 | 0.70 | 1.32 | 1.94 | +| PPLCNet_x0_75 | 224 | 256 | 0.71 | 1.49 | 2.19 | +| PPLCNet_x1_0 | 224 | 256 | 0.73 | 1.64 | 2.53 | +| PPLCNet_x1_5 | 224 | 256 | 0.82 | 2.06 | 3.12 | +| PPLCNet_x2_0 | 224 | 256 | 0.94 | 2.58 | 4.08 | + + + +## 6. 基于 SD855 的预测速度 + +| Models | SD855 time(ms)
bs=1, thread=1 | SD855 time(ms)
bs=1, thread=2 | SD855 time(ms)
bs=1, thread=4 | +| ------------- | -------------------------------- | --------------------------------- | --------------------------------- | +| PPLCNet_x0_25 | 2.30 | 1.62 | 1.32 | +| PPLCNet_x0_35 | 3.15 | 2.11 | 1.64 | +| PPLCNet_x0_5 | 4.27 | 2.73 | 1.92 | +| PPLCNet_x0_75 | 7.38 | 4.51 | 2.91 | +| PPLCNet_x1_0 | 10.78 | 6.49 | 3.98 | +| PPLCNet_x1_5 | 20.55 | 12.26 | 7.54 | +| PPLCNet_x2_0 | 33.79 | 20.17 | 12.10 | +| PPLCNet_x2_5 | 49.89 | 29.60 | 17.82 | + + + +## 7. 总结 PP-LCNet 没有像学术界那样死扣极致的 FLOPs 与 Params,而是着眼于分析如何添加对 Intel CPU 友好的模块来提升模型的性能,这样可以更好的平衡准确率和推理时间,其中的实验结论也很适合其他网络结构设计的研究者,同时也为 NAS 搜索研究者提供了更小的搜索空间和一般结论。最终的 PP-LCNet 在产业界也可以更好的落地和应用。 - -## 6. 引用 + + +## 8. 引用 如果你的论文用到了 PP-LCNet 的方法,请添加如下 cite: ``` diff --git a/docs/zh_CN/models/ReXNet.md b/docs/zh_CN/models/ReXNet.md index 97ccec85c..37e93fd1b 100644 --- a/docs/zh_CN/models/ReXNet.md +++ b/docs/zh_CN/models/ReXNet.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于 V100 GPU 的预测速度](#3) @@ -24,4 +25,16 @@ ReXNet 是 NAVER 集团 ClovaAI 研发中心基于一种网络架构设计新范 | ReXNet_2_0 | 81.22 | 95.36 | 81.6 | 1.561 | 16.449 | | ReXNet_3_0 | 82.09 | 96.12 | 82.8 | 3.445 | 34.833 | + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ---------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| ReXNet_1_0 | 224 | 256 | 3.08 | 4.15 | 5.49 | +| ReXNet_1_3 | 224 | 256 | 3.54 | 4.87 | 6.54 | +| ReXNet_1_5 | 224 | 256 | 3.68 | 5.31 | 7.38 | +| ReXNet_2_0 | 224 | 256 | 4.30 | 6.54 | 9.19 | +| ReXNet_3_0 | 224 | 256 | 5.74 | 9.49 | 13.62 | + 关于 Inference speed 等信息,敬请期待。 diff --git a/docs/zh_CN/models/RedNet.md b/docs/zh_CN/models/RedNet.md index 0d1846dcc..2f7506085 100644 --- a/docs/zh_CN/models/RedNet.md +++ b/docs/zh_CN/models/RedNet.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于 V100 GPU 的预测速度](#3) ## 1. 概述 @@ -19,4 +20,16 @@ | RedNet38 | 12.4 | 2.2 | 77.47 | 93.56 | | RedNet50 | 15.5 | 2.7 | 78.33 | 94.17 | | RedNet101 | 25.7 | 4.7 | 78.94 | 94.36 | -| RedNet152 | 34.0 | 6.8 | 79.17 | 94.40 | \ No newline at end of file +| RedNet152 | 34.0 | 6.8 | 79.17 | 94.40 | + + + +## 3. 基于 V100 GPU 的预测速度 + +| 模型 | Crop Size | Resize Short Size | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | +| --------- | --------- | ----------------- | ---------------- | ---------------- | ----------------- | +| RedNet26 | 224 | 256 | 4.45 | 15.16 | 29.03 | +| RedNet38 | 224 | 256 | 6.24 | 21.39 | 41.26 | +| RedNet50 | 224 | 256 | 8.04 | 27.71 | 53.73 | +| RedNet101 | 224 | 256 | 13.07 | 44.12 | 83.28 | +| RedNet152 | 224 | 256 | 18.66 | 63.27 | 119.48 | \ No newline at end of file diff --git a/docs/zh_CN/models/ResNeSt_RegNet.md b/docs/zh_CN/models/ResNeSt_RegNet.md index fa40775cd..967351bed 100644 --- a/docs/zh_CN/models/ResNeSt_RegNet.md +++ b/docs/zh_CN/models/ResNeSt_RegNet.md @@ -4,7 +4,8 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) -* [3. 基于 T4 GPU 的预测速度](#3) +* [3. 基于 V100 GPU 的预测速度](#3) +* [4. 基于 T4 GPU 的预测速度](#4) @@ -26,7 +27,17 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概 -## 3. 基于 T4 GPU 的预测速度 +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ---------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| ResNeSt50_fast_1s1x64d | 224 | 256 | 2.73 | 5.33 | 8.24 | +| ResNeSt50 | 224 | 256 | 7.36 | 10.23 | 13.84 | +| RegNetX_4GF | 224 | 256 | 6.46 | 8.48 | 11.45 | + + + +## 4. 基于 T4 GPU 的预测速度 | Models | Crop Size | Resize Short Size | FP16
Batch Size=1
(ms) | FP16
Batch Size=4
(ms) | FP16
Batch Size=8
(ms) | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | |--------------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| diff --git a/docs/zh_CN/models/ResNet_and_vd.md b/docs/zh_CN/models/ResNet_and_vd.md index 2edeb3bb1..3e8e60046 100644 --- a/docs/zh_CN/models/ResNet_and_vd.md +++ b/docs/zh_CN/models/ResNet_and_vd.md @@ -63,24 +63,24 @@ ResNet 系列模型是在 2015 年提出的,一举在 ILSVRC2015 比赛中取 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|------------------|-----------|-------------------|--------------------------| -| ResNet18 | 224 | 256 | 1.499 | -| ResNet18_vd | 224 | 256 | 1.603 | -| ResNet34 | 224 | 256 | 2.272 | -| ResNet34_vd | 224 | 256 | 2.343 | -| ResNet34_vd_ssld | 224 | 256 | 2.343 | -| ResNet50 | 224 | 256 | 2.939 | -| ResNet50_vc | 224 | 256 | 3.041 | -| ResNet50_vd | 224 | 256 | 3.165 | -| ResNet50_vd_v2 | 224 | 256 | 3.165 | -| ResNet101 | 224 | 256 | 5.314 | -| ResNet101_vd | 224 | 256 | 5.252 | -| ResNet152 | 224 | 256 | 7.205 | -| ResNet152_vd | 224 | 256 | 7.200 | -| ResNet200_vd | 224 | 256 | 8.885 | -| ResNet50_vd_ssld | 224 | 256 | 3.165 | -| ResNet101_vd_ssld | 224 | 256 | 5.252 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=1\4
(ms) | FP32
Batch Size=8
(ms) | +|------------------|-----------|-------------------|--------------------------|--------------------------|--------------------------| +| ResNet18 | 224 | 256 | 1.22 | 2.19 | 3.63 | +| ResNet18_vd | 224 | 256 | 1.26 | 2.28 | 3.89 | +| ResNet34 | 224 | 256 | 1.97 | 3.25 | 5.70 | +| ResNet34_vd | 224 | 256 | 2.00 | 3.28 | 5.84 | +| ResNet34_vd_ssld | 224 | 256 | 2.00 | 3.26 | 5.85 | +| ResNet50 | 224 | 256 | 2.54 | 4.79 | 7.40 | +| ResNet50_vc | 224 | 256 | 2.57 | 4.83 | 7.52 | +| ResNet50_vd | 224 | 256 | 2.60 | 4.86 | 7.63 | +| ResNet50_vd_v2 | 224 | 256 | 2.59 | 4.86 | 7.59 | +| ResNet101 | 224 | 256 | 4.37 | 8.18 | 12.38 | +| ResNet101_vd | 224 | 256 | 4.43 | 8.25 | 12.60 | +| ResNet152 | 224 | 256 | 6.05 | 11.41 | 17.33 | +| ResNet152_vd | 224 | 256 | 6.11 | 11.51 | 17.59 | +| ResNet200_vd | 224 | 256 | 7.70 | 14.57 | 22.16 | +| ResNet50_vd_ssld | 224 | 256 | 2.59 | 4.87 | 7.62 | +| ResNet101_vd_ssld | 224 | 256 | 4.43 | 8.25 | 12.58 | diff --git a/docs/zh_CN/models/SEResNext_and_Res2Net.md b/docs/zh_CN/models/SEResNext_and_Res2Net.md index b0ea8125b..30fac650a 100644 --- a/docs/zh_CN/models/SEResNext_and_Res2Net.md +++ b/docs/zh_CN/models/SEResNext_and_Res2Net.md @@ -71,32 +71,35 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方 ## 3. 基于 V100 GPU 的预测速度 -| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | -|-----------------------|-----------|-------------------|--------------------------| -| Res2Net50_26w_4s | 224 | 256 | 4.148 | -| Res2Net50_vd_26w_4s | 224 | 256 | 4.172 | -| Res2Net50_14w_8s | 224 | 256 | 5.113 | -| Res2Net101_vd_26w_4s | 224 | 256 | 7.327 | -| Res2Net200_vd_26w_4s | 224 | 256 | 12.806 | -| ResNeXt50_32x4d | 224 | 256 | 10.964 | -| ResNeXt50_vd_32x4d | 224 | 256 | 7.566 | -| ResNeXt50_64x4d | 224 | 256 | 13.905 | -| ResNeXt50_vd_64x4d | 224 | 256 | 14.321 | -| ResNeXt101_32x4d | 224 | 256 | 14.915 | -| ResNeXt101_vd_32x4d | 224 | 256 | 14.885 | -| ResNeXt101_64x4d | 224 | 256 | 28.716 | -| ResNeXt101_vd_64x4d | 224 | 256 | 28.398 | -| ResNeXt152_32x4d | 224 | 256 | 22.996 | -| ResNeXt152_vd_32x4d | 224 | 256 | 22.729 | -| ResNeXt152_64x4d | 224 | 256 | 46.705 | -| ResNeXt152_vd_64x4d | 224 | 256 | 46.395 | -| SE_ResNet18_vd | 224 | 256 | 1.694 | -| SE_ResNet34_vd | 224 | 256 | 2.786 | -| SE_ResNet50_vd | 224 | 256 | 3.749 | -| SE_ResNeXt50_32x4d | 224 | 256 | 8.924 | -| SE_ResNeXt50_vd_32x4d | 224 | 256 | 9.011 | -| SE_ResNeXt101_32x4d | 224 | 256 | 19.204 | -| SENet154_vd | 224 | 256 | 50.406 | +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +|-----------------------|-----------|-------------------|-----------------------|-----------------------|-----------------------| +| Res2Net50_26w_4s | 224 | 256 | 3.52 | 6.23 | 9.30 | +| Res2Net50_vd_26w_4s | 224 | 256 | 3.59 | 6.35 | 9.50 | +| Res2Net50_14w_8s | 224 | 256 | 4.39 | 7.21 | 10.38 | +| Res2Net101_vd_26w_4s | 224 | 256 | 6.34 | 11.02 | 16.13 | +| Res2Net200_vd_26w_4s | 224 | 256 | 11.45 | 19.77 | 28.81 | +| ResNeXt50_32x4d | 224 | 256 | 5.07 | 8.49 | 12.02 | +| ResNeXt50_vd_32x4d | 224 | 256 | 5.29 | 8.68 | 12.33 | +| ResNeXt50_64x4d | 224 | 256 | 9.39 | 13.97 | 20.56 | +| ResNeXt50_vd_64x4d | 224 | 256 | 9.75 | 14.14 | 20.84 | +| ResNeXt101_32x4d | 224 | 256 | 11.34 | 16.78 | 22.80 | +| ResNeXt101_vd_32x4d | 224 | 256 | 11.36 | 17.01 | 23.07 | +| ResNeXt101_64x4d | 224 | 256 | 21.57 | 28.08 | 39.49 | +| ResNeXt101_vd_64x4d | 224 | 256 | 21.57 | 28.22 | 39.70 | +| ResNeXt152_32x4d | 224 | 256 | 17.14 | 25.11 | 33.79 | +| ResNeXt152_vd_32x4d | 224 | 256 | 16.99 | 25.29 | 33.85 | +| ResNeXt152_64x4d | 224 | 256 | 33.07 | 42.05 | 59.13 | +| ResNeXt152_vd_64x4d | 224 | 256 | 33.30 | 42.41 | 59.42 | +| SE_ResNet18_vd | 224 | 256 | 1.48 | 2.70 | 4.32 | +| SE_ResNet34_vd | 224 | 256 | 2.42 | 3.69 | 6.29 | +| SE_ResNet50_vd | 224 | 256 | 3.11 | 5.99 | 9.34 | +| SE_ResNeXt50_32x4d | 224 | 256 | 6.39 | 11.01 | 14.94 | +| SE_ResNeXt50_vd_32x4d | 224 | 256 | 7.04 | 11.57 | 16.01 | +| SE_ResNeXt101_32x4d | 224 | 256 | 13.31 | 21.85 | 28.77 | +| SENet154_vd | 224 | 256 | 34.83 | 51.22 | 69.74 | +| Res2Net50_vd_26w_4s_ssld | 224 | 256 | 3.58 | 6.35 | 9.52 | +| Res2Net101_vd_26w_4s_ssld | 224 | 256 | 6.33 | 11.02 | 16.11 | +| Res2Net200_vd_26w_4s_ssld | 224 | 256 | 11.47 | 19.75 | 28.83 | diff --git a/docs/zh_CN/models/SwinTransformer.md b/docs/zh_CN/models/SwinTransformer.md index 4e62f01d2..40a873274 100644 --- a/docs/zh_CN/models/SwinTransformer.md +++ b/docs/zh_CN/models/SwinTransformer.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于V100 GPU 的预测速度](#3) @@ -28,3 +29,20 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算 [1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 **注**:与 Reference 的精度差异源于数据预处理不同。 + + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ------------------------------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| SwinTransformer_tiny_patch4_window7_224 | 224 | 256 | 6.59 | 9.68 | 16.32 | +| SwinTransformer_small_patch4_window7_224 | 224 | 256 | 12.54 | 17.07 | 28.08 | +| SwinTransformer_base_patch4_window7_224 | 224 | 256 | 13.37 | 23.53 | 39.11 | +| SwinTransformer_base_patch4_window12_384 | 384 | 384 | 19.52 | 64.56 | 123.30 | +| SwinTransformer_base_patch4_window7_224[1] | 224 | 256 | 13.53 | 23.46 | 39.13 | +| SwinTransformer_base_patch4_window12_384[1] | 384 | 384 | 19.65 | 64.72 | 123.42 | +| SwinTransformer_large_patch4_window7_224[1] | 224 | 256 | 15.74 | 38.57 | 71.49 | +| SwinTransformer_large_patch4_window12_384[1] | 384 | 384 | 32.61 | 116.59 | 223.23 | + +[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。 diff --git a/docs/zh_CN/models/Twins.md b/docs/zh_CN/models/Twins.md index f967b98f8..623ebf837 100644 --- a/docs/zh_CN/models/Twins.md +++ b/docs/zh_CN/models/Twins.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于V100 GPU 的预测速度](#3) @@ -24,3 +25,16 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制 | alt_gvt_large | 0.8331 | 0.9642 | 0.837 | - | 14.8 | 99.2 | **注**:与 Reference 的精度差异源于数据预处理不同。 + + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| pcpvt_small | 224 | 256 | 7.32 | 10.51 | 15.27 | +| pcpvt_base | 224 | 256 | 12.20 | 16.22 | 23.16 | +| pcpvt_large | 224 | 256 | 16.47 | 22.90 | 32.73 | +| alt_gvt_small | 224 | 256 | 6.94 | 9.01 | 12.27 | +| alt_gvt_base | 224 | 256 | 9.37 | 15.02 | 24.54 | +| alt_gvt_large | 224 | 256 | 11.76 | 22.08 | 35.12 | diff --git a/docs/zh_CN/models/ViT_and_DeiT.md b/docs/zh_CN/models/ViT_and_DeiT.md index 63b1363dd..51df9396c 100644 --- a/docs/zh_CN/models/ViT_and_DeiT.md +++ b/docs/zh_CN/models/ViT_and_DeiT.md @@ -4,6 +4,7 @@ * [1. 概述](#1) * [2. 精度、FLOPS 和参数量](#2) +* [3. 基于V100 GPU 的预测速度](#3) @@ -20,24 +21,50 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020 | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| -| ViT_small_patch16_224 | 0.7769 | 0.9342 | 0.7785 | 0.9342 | | | -| ViT_base_patch16_224 | 0.8195 | 0.9617 | 0.8178 | 0.9613 | | | -| ViT_base_patch16_384 | 0.8414 | 0.9717 | 0.8420 | 0.9722 | | | -| ViT_base_patch32_384 | 0.8176 | 0.9613 | 0.8166 | 0.9613 | | | -| ViT_large_patch16_224 | 0.8323 | 0.9650 | 0.8306 | 0.9644 | | | -| ViT_large_patch16_384 | 0.8513 | 0.9736 | 0.8517 | 0.9736 | | | -| ViT_large_patch32_384 | 0.8153 | 0.9608 | 0.815 | - | | | +| ViT_small_patch16_224 | 0.7769 | 0.9342 | 0.7785 | 0.9342 | 9.41 | 48.60 | +| ViT_base_patch16_224 | 0.8195 | 0.9617 | 0.8178 | 0.9613 | 16.85 | 86.42 | +| ViT_base_patch16_384 | 0.8414 | 0.9717 | 0.8420 | 0.9722 | 49.35 | 86.42 | +| ViT_base_patch32_384 | 0.8176 | 0.9613 | 0.8166 | 0.9613 | 12.66 | 88.19 | +| ViT_large_patch16_224 | 0.8323 | 0.9650 | 0.8306 | 0.9644 | 59.65 | 304.12 | +| ViT_large_patch16_384 | 0.8513 | 0.9736 | 0.8517 | 0.9736 | 174.70 | 304.12 | +| ViT_large_patch32_384 | 0.8153 | 0.9608 | 0.815 | - | 44.24 | 306.48 | | Models | Top1 | Top5 | Reference
top1 | Reference
top5 | FLOPS
(G) | Params
(M) | |:--:|:--:|:--:|:--:|:--:|:--:|:--:| -| DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | | | -| DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | | | -| DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | | | -| DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | | | -| DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | | | -| DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | | | -| DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | | | -| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | | | +| DeiT_tiny_patch16_224 | 0.718 | 0.910 | 0.722 | 0.911 | 1.07 | 5.68 | +| DeiT_small_patch16_224 | 0.796 | 0.949 | 0.799 | 0.950 | 4.24 | 21.97 | +| DeiT_base_patch16_224 | 0.817 | 0.957 | 0.818 | 0.956 | 16.85 | 86.42 | +| DeiT_base_patch16_384 | 0.830 | 0.962 | 0.829 | 0.972 | 49.35 | 86.42 | +| DeiT_tiny_distilled_patch16_224 | 0.741 | 0.918 | 0.745 | 0.919 | 1.08 | 5.87 | +| DeiT_small_distilled_patch16_224 | 0.809 | 0.953 | 0.812 | 0.954 | 4.26 | 22.36 | +| DeiT_base_distilled_patch16_224 | 0.831 | 0.964 | 0.834 | 0.965 | 16.93 | 87.18 | +| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | 49.43 | 87.18 | 关于 Params、FLOPs、Inference speed 等信息,敬请期待。 + + + +## 3. 基于 V100 GPU 的预测速度 + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| -------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| ViT_small_
patch16_224 | 256 | 224 | 3.71 | 9.05 | 16.72 | +| ViT_base_
patch16_224 | 256 | 224 | 6.12 | 14.84 | 28.51 | +| ViT_base_
patch16_384 | 384 | 384 | 14.15 | 48.38 | 95.06 | +| ViT_base_
patch32_384 | 384 | 384 | 4.94 | 13.43 | 24.08 | +| ViT_large_
patch16_224 | 256 | 224 | 15.53 | 49.50 | 94.09 | +| ViT_large_
patch16_384 | 384 | 384 | 39.51 | 152.46 | 304.06 | +| ViT_large_
patch32_384 | 384 | 384 | 11.44 | 36.09 | 70.63 | + +| Models | Crop Size | Resize Short Size | FP32
Batch Size=1
(ms) | FP32
Batch Size=4
(ms) | FP32
Batch Size=8
(ms) | +| ------------------------------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ | +| DeiT_tiny_
patch16_224 | 256 | 224 | 3.61 | 3.94 | 6.10 | +| DeiT_small_
patch16_224 | 256 | 224 | 3.61 | 6.24 | 10.49 | +| DeiT_base_
patch16_224 | 256 | 224 | 6.13 | 14.87 | 28.50 | +| DeiT_base_
patch16_384 | 384 | 384 | 14.12 | 48.80 | 97.60 | +| DeiT_tiny_
distilled_patch16_224 | 256 | 224 | 3.51 | 4.05 | 6.03 | +| DeiT_small_
distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 | +| DeiT_base_
distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 | +| DeiT_base_
distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 | +