* fix en quick start

* add en image
pull/943/head
littletomatodonkey 2021-06-21 16:01:36 +08:00 committed by GitHub
parent 8c8824d05d
commit c8f5ee2f1c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 21 additions and 21 deletions

View File

@ -39,7 +39,8 @@ def draw_bbox_results(image,
xmin, ymin, xmax, ymax = result["bbox"] xmin, ymin, xmax, ymax = result["bbox"]
text = "{}, {:.2f}".format(result["rec_docs"], result["rec_scores"]) text = "{}, {:.2f}".format(result["rec_docs"], result["rec_scores"])
th = font_size th = font_size
tw = int(len(result["rec_docs"]) * font_size) + 60 tw = font.getsize(text)[0]
# tw = int(len(result["rec_docs"]) * font_size) + 60
start_y = max(0, ymin - th) start_y = max(0, ymin - th)
draw.rectangle( draw.rectangle(

View File

@ -89,7 +89,7 @@ wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/infere
cd .. cd ..
# Download the demo data and unzip it # Download the demo data and unzip it
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_v1.0.tar && tar -xf recognition_demo_data_v1.0.tar wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/recognition_demo_data_en_v1.0.tar && tar -xf recognition_demo_data_en_v1.0.tar
``` ```
Once unpacked, the `recognition_demo_data_v1.0` folder should have the following file structure. Once unpacked, the `recognition_demo_data_v1.0` folder should have the following file structure.
@ -137,7 +137,7 @@ Run the following command to identify and retrieve the image `./recognition_demo
# use the following command to predict using GPU. # use the following command to predict using GPU.
python3.7 python/predict_system.py -c configs/inference_product.yaml python3.7 python/predict_system.py -c configs/inference_product.yaml
# use the following command to predict using CPU # use the following command to predict using CPU
python3.7 python/predict_system.py -c configs/inference_product.yaml python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.use_gpu=False
``` ```
**Note:** Program lib used to build index is compliled on our machine, if error occured because of the environment, you can refer to [vector search tutorial](../../../deploy/vector_search/README.md) to rebuild the lib. **Note:** Program lib used to build index is compliled on our machine, if error occured because of the environment, you can refer to [vector search tutorial](../../../deploy/vector_search/README.md) to rebuild the lib.
@ -153,7 +153,7 @@ The image to be retrieved is shown below.
The final output is shown below. The final output is shown below.
``` ```
[{'bbox': [287, 129, 497, 326], 'rec_docs': '稻香村金猪饼', 'rec_scores': 0.8309420943260193}, {'bbox': [99, 242, 313, 426], 'rec_docs': '稻香村金猪饼', 'rec_scores': 0.7245652079582214}] [{'bbox': [287, 129, 497, 326], 'rec_docs': 'Daoxaingcun Golden Piggie Cake', 'rec_scores': 0.8309420347213745}, {'bbox': [99, 242, 313, 426], 'rec_docs': 'Daoxaingcun Golden Piggie Cake', 'rec_scores': 0.7245651483535767}]
``` ```
@ -163,7 +163,7 @@ where bbox indicates the location of the detected object, rec_docs indicates the
The detection result is also saved in the folder `output`, for this image, the visualization result is as follows. The detection result is also saved in the folder `output`, for this image, the visualization result is as follows.
<div align="center"> <div align="center">
<img src="../../images/recognition/product_demo/result/daoxiangcunjinzhubing_6.jpg" width = "400" /> <img src="../../images/recognition/product_demo/result/daoxiangcunjinzhubing_6_en.jpg" width = "400" />
</div> </div>
@ -182,13 +182,12 @@ The results on the screen are shown as following.
``` ```
... ...
[{'bbox': [37, 29, 123, 89], 'rec_docs': '香奈儿包', 'rec_scores': 0.6163763999938965}, {'bbox': [153, 96, 235, 175], 'rec_docs': '香奈儿包', 'rec_scores': 0.5279821157455444}] [{'bbox': [37, 29, 123, 89], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.6163763999938965}, {'bbox': [153, 96, 235, 175], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.5279821157455444}]
[{'bbox': [735, 562, 1133, 851], 'rec_docs': '香奈儿包', 'rec_scores': 0.5588355660438538}] [{'bbox': [735, 562, 1133, 851], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.5588355660438538}]
[{'bbox': [124, 50, 230, 129], 'rec_docs': '香奈儿包', 'rec_scores': 0.6980369687080383}] [{'bbox': [124, 50, 230, 129], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.6980369687080383}]
[{'bbox': [0, 0, 275, 183], 'rec_docs': '香奈儿包', 'rec_scores': 0.5818190574645996}] [{'bbox': [0, 0, 275, 183], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.5818190574645996}]
[{'bbox': [400, 1179, 905, 1537], 'rec_docs': '香奈儿包', 'rec_scores': 0.9814301133155823}] [{'bbox': [400, 1179, 905, 1537], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.9814301133155823}, {'bbox': [295, 713, 820, 1046], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.9496176242828369}, {'bbox': [153, 236, 694, 614], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.8395382761955261}]
[{'bbox': [544, 4, 1482, 932], 'rec_docs': '香奈儿包', 'rec_scores': 0.5143815279006958}] [{'bbox': [544, 4, 1482, 932], 'rec_docs': 'Chanel Handbag', 'rec_scores': 0.5143815279006958}]
[{'bbox': [29, 42, 194, 183], 'rec_docs': '香奈儿包', 'rec_scores': 0.9543638229370117}]
... ...
``` ```
@ -238,12 +237,12 @@ cp recognition_demo_data_v1.0/gallery_product/data_file.txt recognition_demo_dat
Then add some new lines into the new label file, which is shown as follows. Then add some new lines into the new label file, which is shown as follows.
``` ```
gallery/anmuxi/001.jpg 安慕希酸奶 gallery/anmuxi/001.jpg Anmuxi Ambrosial Yogurt
gallery/anmuxi/002.jpg 安慕希酸奶 gallery/anmuxi/002.jpg Anmuxi Ambrosial Yogurt
gallery/anmuxi/003.jpg 安慕希酸奶 gallery/anmuxi/003.jpg Anmuxi Ambrosial Yogurt
gallery/anmuxi/004.jpg 安慕希酸奶 gallery/anmuxi/004.jpg Anmuxi Ambrosial Yogurt
gallery/anmuxi/005.jpg 安慕希酸奶 gallery/anmuxi/005.jpg Anmuxi Ambrosial Yogurt
gallery/anmuxi/006.jpg 安慕希酸奶 gallery/anmuxi/006.jpg Anmuxi Ambrosial Yogurt
``` ```
Each line can be splited into two fields. The first field denotes the relative image path, and the second field denotes its label. The `delimiter` is `tab` here. Each line can be splited into two fields. The first field denotes the relative image path, and the second field denotes its label. The `delimiter` is `tab` here.
@ -274,11 +273,11 @@ python3.7 python/predict_system.py -c configs/inference_product.yaml -o Global.i
The output is as follows: The output is as follows:
``` ```
[{'bbox': [243, 80, 523, 522], 'rec_docs': '安慕希酸奶', 'rec_scores': 0.5570770502090454}] [{'bbox': [243, 80, 523, 522], 'rec_docs': 'Anmuxi Ambrosial Yogurt', 'rec_scores': 0.5570770502090454}]
``` ```
The final recognition result is `安慕希酸奶`, which is corrrect, the visualization result is as follows. The final recognition result is `Anmuxi Ambrosial Yogurt`, which is corrrect, the visualization result is as follows.
<div align="center"> <div align="center">
<img src="../../images/recognition/product_demo/result/anmuxi.jpg" width = "400" /> <img src="../../images/recognition/product_demo/result/anmuxi_en.jpg" width = "400" />
</div> </div>

Binary file not shown.

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB