parent
a62d5503fc
commit
d9eeb2d1bb
|
@ -52,8 +52,7 @@ class ConvBNLayer(TheseusLayer):
|
|||
stride=1,
|
||||
padding=0,
|
||||
groups=1,
|
||||
act="relu",
|
||||
name=None):
|
||||
act="relu"):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self.conv = Conv2D(
|
||||
|
@ -63,15 +62,10 @@ class ConvBNLayer(TheseusLayer):
|
|||
stride=stride,
|
||||
padding=padding,
|
||||
groups=groups,
|
||||
weight_attr=ParamAttr(name=name+"_weights"),
|
||||
bias_attr=False)
|
||||
self.batch_norm = BatchNorm(
|
||||
num_filters,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=name+"_bn_scale"),
|
||||
bias_attr=ParamAttr(name=name+"_bn_offset"),
|
||||
moving_mean_name=name+"_bn_mean",
|
||||
moving_variance_name=name+"_bn_variance")
|
||||
act=act)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv(inputs)
|
||||
|
@ -85,32 +79,27 @@ class InceptionStem(TheseusLayer):
|
|||
num_filters=32,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
act="relu",
|
||||
name="conv_1a_3x3")
|
||||
act="relu")
|
||||
self.conv_2a_3x3 = ConvBNLayer(num_channels=32,
|
||||
num_filters=32,
|
||||
filter_size=3,
|
||||
stride=1,
|
||||
act="relu",
|
||||
name="conv_2a_3x3")
|
||||
act="relu")
|
||||
self.conv_2b_3x3 = ConvBNLayer(num_channels=32,
|
||||
num_filters=64,
|
||||
filter_size=3,
|
||||
padding=1,
|
||||
act="relu",
|
||||
name="conv_2b_3x3")
|
||||
act="relu")
|
||||
|
||||
self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0)
|
||||
self.conv_3b_1x1 = ConvBNLayer(num_channels=64,
|
||||
num_filters=80,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="conv_3b_1x1")
|
||||
act="relu")
|
||||
self.conv_4a_3x3 = ConvBNLayer(num_channels=80,
|
||||
num_filters=192,
|
||||
filter_size=3,
|
||||
act="relu",
|
||||
name="conv_4a_3x3")
|
||||
act="relu")
|
||||
def forward(self, x):
|
||||
y = self.conv_1a_3x3(x)
|
||||
y = self.conv_2a_3x3(y)
|
||||
|
@ -123,48 +112,41 @@ class InceptionStem(TheseusLayer):
|
|||
|
||||
|
||||
class InceptionA(TheseusLayer):
|
||||
def __init__(self, num_channels, pool_features, name=None):
|
||||
def __init__(self, num_channels, pool_features):
|
||||
super(InceptionA, self).__init__()
|
||||
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=64,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_a_branch1x1_"+name)
|
||||
act="relu")
|
||||
self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=48,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_a_branch5x5_1_"+name)
|
||||
act="relu")
|
||||
self.branch5x5_2 = ConvBNLayer(num_channels=48,
|
||||
num_filters=64,
|
||||
filter_size=5,
|
||||
padding=2,
|
||||
act="relu",
|
||||
name="inception_a_branch5x5_2_"+name)
|
||||
act="relu")
|
||||
|
||||
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=64,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_a_branch3x3dbl_1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
|
||||
num_filters=96,
|
||||
filter_size=3,
|
||||
padding=1,
|
||||
act="relu",
|
||||
name="inception_a_branch3x3dbl_2_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
|
||||
num_filters=96,
|
||||
filter_size=3,
|
||||
padding=1,
|
||||
act="relu",
|
||||
name="inception_a_branch3x3dbl_3_"+name)
|
||||
act="relu")
|
||||
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
|
||||
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=pool_features,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_a_branch_pool_"+name)
|
||||
act="relu")
|
||||
|
||||
def forward(self, x):
|
||||
branch1x1 = self.branch1x1(x)
|
||||
|
@ -183,31 +165,27 @@ class InceptionA(TheseusLayer):
|
|||
|
||||
|
||||
class InceptionB(TheseusLayer):
|
||||
def __init__(self, num_channels, name=None):
|
||||
def __init__(self, num_channels):
|
||||
super(InceptionB, self).__init__()
|
||||
self.branch3x3 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=384,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
act="relu",
|
||||
name="inception_b_branch3x3_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=64,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_b_branch3x3dbl_1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
|
||||
num_filters=96,
|
||||
filter_size=3,
|
||||
padding=1,
|
||||
act="relu",
|
||||
name="inception_b_branch3x3dbl_2_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
|
||||
num_filters=96,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
act="relu",
|
||||
name="inception_b_branch3x3dbl_3_"+name)
|
||||
act="relu")
|
||||
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -224,70 +202,60 @@ class InceptionB(TheseusLayer):
|
|||
return outputs
|
||||
|
||||
class InceptionC(TheseusLayer):
|
||||
def __init__(self, num_channels, channels_7x7, name=None):
|
||||
def __init__(self, num_channels, channels_7x7):
|
||||
super(InceptionC, self).__init__()
|
||||
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=192,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_c_branch1x1_"+name)
|
||||
act="relu")
|
||||
self.branch7x7_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=1,
|
||||
stride=1,
|
||||
act="relu",
|
||||
name="inception_c_branch7x7_1_"+name)
|
||||
act="relu")
|
||||
self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=(1, 7),
|
||||
stride=1,
|
||||
padding=(0, 3),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7_2_"+name)
|
||||
act="relu")
|
||||
self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=192,
|
||||
filter_size=(7, 1),
|
||||
stride=1,
|
||||
padding=(3, 0),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7_3_"+name)
|
||||
act="relu")
|
||||
|
||||
self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_c_branch7x7dbl_1_"+name)
|
||||
act="relu")
|
||||
self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=(7, 1),
|
||||
padding = (3, 0),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7dbl_2_"+name)
|
||||
act="relu")
|
||||
self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=(1, 7),
|
||||
padding = (0, 3),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7dbl_3_"+name)
|
||||
act="relu")
|
||||
self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=channels_7x7,
|
||||
filter_size=(7, 1),
|
||||
padding = (3, 0),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7dbl_4_"+name)
|
||||
act="relu")
|
||||
self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7,
|
||||
num_filters=192,
|
||||
filter_size=(1, 7),
|
||||
padding = (0, 3),
|
||||
act="relu",
|
||||
name="inception_c_branch7x7dbl_5_"+name)
|
||||
act="relu")
|
||||
|
||||
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
|
||||
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=192,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_c_branch_pool_"+name)
|
||||
act="relu")
|
||||
|
||||
def forward(self, x):
|
||||
branch1x1 = self.branch1x1(x)
|
||||
|
@ -310,42 +278,36 @@ class InceptionC(TheseusLayer):
|
|||
return outputs
|
||||
|
||||
class InceptionD(TheseusLayer):
|
||||
def __init__(self, num_channels, name=None):
|
||||
def __init__(self, num_channels):
|
||||
super(InceptionD, self).__init__()
|
||||
self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=192,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_d_branch3x3_1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3_2 = ConvBNLayer(num_channels=192,
|
||||
num_filters=320,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
act="relu",
|
||||
name="inception_d_branch3x3_2_"+name)
|
||||
act="relu")
|
||||
self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=192,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_d_branch7x7x3_1_"+name)
|
||||
act="relu")
|
||||
self.branch7x7x3_2 = ConvBNLayer(num_channels=192,
|
||||
num_filters=192,
|
||||
filter_size=(1, 7),
|
||||
padding=(0, 3),
|
||||
act="relu",
|
||||
name="inception_d_branch7x7x3_2_"+name)
|
||||
act="relu")
|
||||
self.branch7x7x3_3 = ConvBNLayer(num_channels=192,
|
||||
num_filters=192,
|
||||
filter_size=(7, 1),
|
||||
padding=(3, 0),
|
||||
act="relu",
|
||||
name="inception_d_branch7x7x3_3_"+name)
|
||||
act="relu")
|
||||
self.branch7x7x3_4 = ConvBNLayer(num_channels=192,
|
||||
num_filters=192,
|
||||
filter_size=3,
|
||||
stride=2,
|
||||
act="relu",
|
||||
name="inception_d_branch7x7x3_4_"+name)
|
||||
act="relu")
|
||||
self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -363,60 +325,51 @@ class InceptionD(TheseusLayer):
|
|||
return outputs
|
||||
|
||||
class InceptionE(TheseusLayer):
|
||||
def __init__(self, num_channels, name=None):
|
||||
def __init__(self, num_channels):
|
||||
super(InceptionE, self).__init__()
|
||||
self.branch1x1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=320,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_e_branch1x1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=384,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_e_branch3x3_1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3_2a = ConvBNLayer(num_channels=384,
|
||||
num_filters=384,
|
||||
filter_size=(1, 3),
|
||||
padding=(0, 1),
|
||||
act="relu",
|
||||
name="inception_e_branch3x3_2a_"+name)
|
||||
act="relu")
|
||||
self.branch3x3_2b = ConvBNLayer(num_channels=384,
|
||||
num_filters=384,
|
||||
filter_size=(3, 1),
|
||||
padding=(1, 0),
|
||||
act="relu",
|
||||
name="inception_e_branch3x3_2b_"+name)
|
||||
act="relu")
|
||||
|
||||
self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=448,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_e_branch3x3dbl_1_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_2 = ConvBNLayer(num_channels=448,
|
||||
num_filters=384,
|
||||
filter_size=3,
|
||||
padding=1,
|
||||
act="relu",
|
||||
name="inception_e_branch3x3dbl_2_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
|
||||
num_filters=384,
|
||||
filter_size=(1, 3),
|
||||
padding=(0, 1),
|
||||
act="relu",
|
||||
name="inception_e_branch3x3dbl_3a_"+name)
|
||||
act="relu")
|
||||
self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
|
||||
num_filters=384,
|
||||
filter_size=(3, 1),
|
||||
padding=(1, 0),
|
||||
act="relu",
|
||||
name="inception_e_branch3x3dbl_3b_"+name)
|
||||
act="relu")
|
||||
self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
|
||||
self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
|
||||
num_filters=192,
|
||||
filter_size=1,
|
||||
act="relu",
|
||||
name="inception_e_branch_pool_"+name)
|
||||
act="relu")
|
||||
def forward(self, x):
|
||||
branch1x1 = self.branch1x1(x)
|
||||
|
||||
|
@ -454,29 +407,27 @@ class Inception_V3(TheseusLayer):
|
|||
|
||||
self.inception_stem = InceptionStem()
|
||||
|
||||
self.inception_block_list = []
|
||||
self.inception_block_list = nn.LayerList()
|
||||
for i in range(len(self.inception_a_list[0])):
|
||||
inception_a = InceptionA(self.inception_a_list[0][i],
|
||||
self.inception_a_list[1][i],
|
||||
name=str(i+1))
|
||||
self.inception_a_list[1][i])
|
||||
self.inception_block_list.append(inception_a)
|
||||
|
||||
for i in range(len(self.inception_b_list)):
|
||||
inception_b = InceptionB(self.inception_b_list[i], name=str(i+1))
|
||||
inception_b = InceptionB(self.inception_b_list[i])
|
||||
self.inception_block_list.append(inception_b)
|
||||
|
||||
for i in range(len(self.inception_c_list[0])):
|
||||
inception_c = InceptionC(self.inception_c_list[0][i],
|
||||
self.inception_c_list[1][i],
|
||||
name=str(i+1))
|
||||
self.inception_c_list[1][i])
|
||||
self.inception_block_list.append(inception_c)
|
||||
|
||||
for i in range(len(self.inception_d_list)):
|
||||
inception_d = InceptionD(self.inception_d_list[i], name=str(i+1))
|
||||
inception_d = InceptionD(self.inception_d_list[i])
|
||||
self.inception_block_list.append(inception_d)
|
||||
|
||||
for i in range(len(self.inception_e_list)):
|
||||
inception_e = InceptionE(self.inception_e_list[i], name=str(i+1))
|
||||
inception_e = InceptionE(self.inception_e_list[i])
|
||||
self.inception_block_list.append(inception_e)
|
||||
|
||||
self.gap = AdaptiveAvgPool2D(1)
|
||||
|
@ -486,8 +437,8 @@ class Inception_V3(TheseusLayer):
|
|||
2048,
|
||||
class_num,
|
||||
weight_attr=ParamAttr(
|
||||
initializer=Uniform(-stdv, stdv), name="fc_weights"),
|
||||
bias_attr=ParamAttr(name="fc_offset"))
|
||||
initializer=Uniform(-stdv, stdv)),
|
||||
bias_attr=ParamAttr())
|
||||
|
||||
def forward(self, x):
|
||||
y = self.inception_stem(x)
|
||||
|
|
Loading…
Reference in New Issue