update distill and dataaugment doc
parent
984258d6bb
commit
dad82df02e
|
@ -0,0 +1,75 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- AutoAugment:
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,77 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: True
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
mix:
|
||||||
|
- CutmixOperator:
|
||||||
|
alpha: 0.2
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,77 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- Cutout:
|
||||||
|
n_holes: 1
|
||||||
|
length: 112
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,80 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- GridMask:
|
||||||
|
d1: 96
|
||||||
|
d2: 224
|
||||||
|
rotate: 1
|
||||||
|
ratio: 0.5
|
||||||
|
mode: 0
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,75 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- HideAndSeek:
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,77 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: True
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
mix:
|
||||||
|
- MixupOperator:
|
||||||
|
alpha: 0.2
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,77 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- RandAugment:
|
||||||
|
num_layers: 2
|
||||||
|
magnitude: 5
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,80 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50'
|
||||||
|
|
||||||
|
pretrained_model: ""
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 300
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_mix: False
|
||||||
|
ls_epsilon: -1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'Cosine'
|
||||||
|
params:
|
||||||
|
lr: 0.1
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.000100
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- RandomErasing:
|
||||||
|
EPSILON: 0.5
|
||||||
|
sl: 0.02
|
||||||
|
sh: 0.4
|
||||||
|
r1: 0.3
|
||||||
|
mean: [0., 0., 0.]
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,74 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
|
||||||
|
|
||||||
|
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained/"
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 120
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_distillation: True
|
||||||
|
ls_epsilon: 0.1
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'CosineWarmup'
|
||||||
|
params:
|
||||||
|
lr: 1.3
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.00001
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 2048
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -0,0 +1,73 @@
|
||||||
|
mode: 'train'
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNeXt101_32x16d_wsl_distill_ResNet50_vd'
|
||||||
|
|
||||||
|
pretrained_model: "./pretrained/ResNeXt101_32x16d_wsl_pretrained/"
|
||||||
|
model_save_dir: "./output/"
|
||||||
|
classes_num: 1000
|
||||||
|
total_images: 1281167
|
||||||
|
save_interval: 1
|
||||||
|
validate: True
|
||||||
|
valid_interval: 1
|
||||||
|
epochs: 120
|
||||||
|
topk: 5
|
||||||
|
image_shape: [3, 224, 224]
|
||||||
|
|
||||||
|
use_distillation: True
|
||||||
|
|
||||||
|
LEARNING_RATE:
|
||||||
|
function: 'CosineWarmup'
|
||||||
|
params:
|
||||||
|
lr: 0.4
|
||||||
|
|
||||||
|
OPTIMIZER:
|
||||||
|
function: 'Momentum'
|
||||||
|
params:
|
||||||
|
momentum: 0.9
|
||||||
|
regularizer:
|
||||||
|
function: 'L2'
|
||||||
|
factor: 0.00007
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
batch_size: 1024
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/train_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
|
||||||
|
VALID:
|
||||||
|
batch_size: 64
|
||||||
|
num_workers: 4
|
||||||
|
file_list: "./dataset/ILSVRC2012/val_list.txt"
|
||||||
|
data_dir: "./dataset/ILSVRC2012/"
|
||||||
|
shuffle_seed: 0
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- ResizeImage:
|
||||||
|
resize_short: 256
|
||||||
|
- CropImage:
|
||||||
|
size: 224
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1.0/255.0
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
|
@ -185,9 +185,73 @@ for var in ./*_student; do cp "$var" "../student_model/${var%_student}"; done #
|
||||||
|
|
||||||
# 五、SSLD实战
|
# 五、SSLD实战
|
||||||
|
|
||||||
* 该部分内容正在持续更新中,敬请期待。
|
本节简要介绍了SSLD的实战内容,用户可以通过此处的配置启动SSLD蒸馏任务。如果用户对SSLD
|
||||||
|
|
||||||
|
## 7.1 参数配置
|
||||||
|
|
||||||
|
实战部分提供了SSLD蒸馏的示例,在`ppcls/modeling/architectures/distillation_models.py`中提供了`ResNeXt101_32x16d_wsl`蒸馏`ResNet50_vd`与`ResNet50_vd_ssld`蒸馏`MobileNetV3_large_x1_0`的示例,`configs/Distillation`里分别提供了二者的配置文件,用户可以在`tools/run.sh`里直接替换配置文件的路径即可使用。
|
||||||
|
|
||||||
|
### ResNeXt101_32x16d_wsl蒸馏ResNet50_vd
|
||||||
|
|
||||||
|
`ResNeXt101_32x16d_wsl`蒸馏`ResNet50_vd`的配置如下,其中`pretrained model`指定了`ResNeXt101_32x16d_wsl`(教师模型)的预训练模型的路径,该路径也可以同时指定教师模型与学生模型的预训练模型的路径,用户只需要同时传入二者预训练的路径即可(配置中的注释部分)。
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNeXt101_32x16d_wsl_distill_ResNet50_vd'
|
||||||
|
pretrained_model: "./pretrained/ResNeXt101_32x16d_wsl_pretrained/"
|
||||||
|
# pretrained_model:
|
||||||
|
# - "./pretrained/ResNeXt101_32x16d_wsl_pretrained/"
|
||||||
|
# - "./pretrained/ResNet50_vd_pretrained/"
|
||||||
|
use_distillation: True
|
||||||
|
```
|
||||||
|
|
||||||
|
### ResNet50_vd_ssld蒸馏MobileNetV3_large_x1_0
|
||||||
|
|
||||||
|
类似于`ResNeXt101_32x16d_wsl`蒸馏`ResNet50_vd`,`ResNet50_vd_ssld`蒸馏`MobileNetV3_large_x1_0`的配置如下:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
ARCHITECTURE:
|
||||||
|
name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
|
||||||
|
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained/"
|
||||||
|
# pretrained_model:
|
||||||
|
# - "./pretrained/ResNet50_vd_ssld_pretrained/"
|
||||||
|
# - "./pretrained/ResNet50_vd_pretrained/"
|
||||||
|
use_distillation: True
|
||||||
|
```
|
||||||
|
|
||||||
|
## 7.2 启动命令
|
||||||
|
|
||||||
|
当用户配置完训练环境后,类似于训练其他分类任务,只需要将`tools/run.sh`中的配置文件替换成为相应的蒸馏配置文件即可。
|
||||||
|
|
||||||
|
其中`run.sh`中的内容如下:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
|
||||||
|
|
||||||
|
python -m paddle.distributed.launch \
|
||||||
|
--selected_gpus="0,1,2,3" \
|
||||||
|
--log_dir=R50_vd_distill_MV3_large_x1_0 \
|
||||||
|
tools/train.py \
|
||||||
|
-c ./configs/Distillation/R50_vd_distill_MV3_large_x1_0.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
运行`run.sh`
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sh tools/run.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
## 7.3 注意事项
|
||||||
|
|
||||||
|
* 用户在使用SSLD蒸馏之前,首先需要在目标数据集上训练一个教师模型,该教师模型用于指导学生模型在该数据集上的训练。
|
||||||
|
|
||||||
|
* 在用户使用SSLD蒸馏的时候需要将配置文件中的`use_distillation`设置为`True`,另外由于学生模型学习带有知识信息的soft-label,所以需要关掉label_smoothing选项,即将`ls_epsilon`中的值设置在[0,1]之外。
|
||||||
|
|
||||||
|
* 如果学生模型没有加载预训练模型,训练的其他超参数可以参考该学生模型在ImageNet-1k上训练的超参数,如果学生模型加载了预训练模型,学习率可以调整到原来的1/10或者1/100。
|
||||||
|
|
||||||
|
* 在SSLD蒸馏的过程中,学生模型只学习soft-label导致训练目标变的更加复杂,建议可以适当的调小`l2_decay`的值来获得更高的验证集准确率。
|
||||||
|
|
||||||
|
* 若用户准备添加无标签的训练数据,只需要将新的训练数据放置在原本训练数据的路径下,生成新的数据list即可,另外,新生成的数据list需要将无标签的数据添加伪标签(只是为了统一读数据)。
|
||||||
|
|
||||||
**此处插播一条硬广~**
|
**此处插播一条硬广~**
|
||||||
> 如果您觉得此文档对您有帮助,欢迎star、watch、fork,三连我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
> 如果您觉得此文档对您有帮助,欢迎star、watch、fork,三连我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
||||||
|
|
|
@ -438,9 +438,118 @@ new_batch = cutmix_op(batch)
|
||||||
|
|
||||||
# 七、数据增广分类实战
|
# 七、数据增广分类实战
|
||||||
|
|
||||||
* 该部分内容正在持续更新中,敬请期待。
|
本节列举了八类数据增广的参数配置、启动命令以及使用过程的注意事项等。如果用户在使用
|
||||||
|
|
||||||
|
## 7.1 参数配置
|
||||||
|
|
||||||
|
由于不同的数据增广方式含有不同的超参数,为了便于理解和使用,我们在`configs/DataAugment`里分别列举了8种训练ResNet50的数据增广方式的参数配置文件,用户可以在`tools/run.sh`里直接替换配置文件的路径即可使用。此处分别挑选了图像变换、图像裁剪、图像混叠中的一个示例展示,其他参数配置用户可以自查配置文件。
|
||||||
|
|
||||||
|
### RandAugment
|
||||||
|
|
||||||
|
`RandAugment`的图像增广方式的配置如下,其中用户需要指定其中的参数`num_layers`与`magnitude`,默认的数值分别是`2`和`5`。`RandAugment`是在uint8的数据格式上转换的,所以其处理过程应该放在归一化操作(`NormalizeImage`)之前。
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- RandAugment:
|
||||||
|
num_layers: 2
|
||||||
|
magnitude: 5
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
```
|
||||||
|
|
||||||
|
### Cutout
|
||||||
|
|
||||||
|
`Cutout`的图像增广方式的配置如下,其中用户需要指定其中的参数`n_holes`与`length`,默认的数值分别是`1`和`112`。类似其他图像裁剪类的数据增广方式,`Cutout`既可以在uint8格式的数据上操作,也可以在归一化(`NormalizeImage`)后的数据上操作,此处给出的是在归一化后的操作。
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- Cutout:
|
||||||
|
n_holes: 1
|
||||||
|
length: 112
|
||||||
|
- ToCHWImage:
|
||||||
|
```
|
||||||
|
|
||||||
|
### Mixup
|
||||||
|
|
||||||
|
`Mixup`的图像增广方式的配置如下,其中用户需要指定其中的参数`alpha`,默认的数值是`0.2`。类似其他图像混合类的数据增广方式,`Mixup`是在图像做完数据处理后将每个batch内的数据做图像混叠,将混叠后的图像和标签输入网络中训练,所以其是在图像数据处理(图像变换、图像裁剪)后操作。另外,在配置文件中,需要将`use_mix`参数设置为`True`。
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
transforms:
|
||||||
|
- DecodeImage:
|
||||||
|
to_rgb: True
|
||||||
|
to_np: False
|
||||||
|
channel_first: False
|
||||||
|
- RandCropImage:
|
||||||
|
size: 224
|
||||||
|
- RandFlipImage:
|
||||||
|
flip_code: 1
|
||||||
|
- NormalizeImage:
|
||||||
|
scale: 1./255.
|
||||||
|
mean: [0.485, 0.456, 0.406]
|
||||||
|
std: [0.229, 0.224, 0.225]
|
||||||
|
order: ''
|
||||||
|
- ToCHWImage:
|
||||||
|
mix:
|
||||||
|
- MixupOperator:
|
||||||
|
alpha: 0.2
|
||||||
|
```
|
||||||
|
|
||||||
|
## 7.2 启动命令
|
||||||
|
|
||||||
|
当用户配置完训练环境后,类似于训练其他分类任务,只需要将`tools/run.sh`中的配置文件替换成为相应的数据增广方式的配置文件即可。
|
||||||
|
|
||||||
|
其中`run.sh`中的内容如下:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
|
||||||
|
|
||||||
|
python -m paddle.distributed.launch \
|
||||||
|
--selected_gpus="0,1,2,3" \
|
||||||
|
--log_dir=ResNet50_Cutout \
|
||||||
|
tools/train.py \
|
||||||
|
-c ./configs/DataAugment/ResNet50_Cutout.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
运行`run.sh`
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sh tools/run.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
## 7.3 注意事项
|
||||||
|
|
||||||
|
* 在使用图像混叠类的数据处理时,需要将配置文件中的`use_mix`设置为`True`,另外由于图像混叠时需对label进行混叠,无法计算训练数据的准确率,所以在训练过程中没有打印训练准确率。
|
||||||
|
|
||||||
|
* 在使用数据增广后,由于训练数据更难,所以训练损失函数可能较大,训练集的准确率相对较低,但其有拥更好的泛化能力,所以验证集的准确率相对较高。
|
||||||
|
|
||||||
|
* 在使用数据增广后,模型可能会趋于欠拟合状态,建议可以适当的调小`l2_decay`的值来获得更高的验证集准确率。
|
||||||
|
|
||||||
|
* 几乎每一类图像增广均含有超参数,我们只提供了基于ImageNet-1k的超参数,其他数据集需要用户自己调试超参数,具体超参数的含义用户可以阅读相关的论文,调试方法也可以参考训练技巧的章节。
|
||||||
|
|
||||||
**此处插播一条硬广~**
|
**此处插播一条硬广~**
|
||||||
> 如果您觉得此文档对您有帮助,欢迎star、watch、fork,三连我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
> 如果您觉得此文档对您有帮助,欢迎star、watch、fork,三连我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
||||||
|
|
|
@ -44,12 +44,12 @@ def transform(data, ops=[]):
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
class ImageNetPolicy(RawImageNetPolicy):
|
class AutoAugment(RawImageNetPolicy):
|
||||||
""" ImageNetPolicy wrapper to auto fit different img types """
|
""" ImageNetPolicy wrapper to auto fit different img types """
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
if six.PY2:
|
if six.PY2:
|
||||||
super(ImageNetPolicy, self).__init__(*args, **kwargs)
|
super(AutoAugment, self).__init__(*args, **kwargs)
|
||||||
else:
|
else:
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
@ -59,7 +59,7 @@ class ImageNetPolicy(RawImageNetPolicy):
|
||||||
img = Image.fromarray(img)
|
img = Image.fromarray(img)
|
||||||
|
|
||||||
if six.PY2:
|
if six.PY2:
|
||||||
img = super(ImageNetPolicy, self).__call__(img)
|
img = super(AutoAugment, self).__call__(img)
|
||||||
else:
|
else:
|
||||||
img = super().__call__(img)
|
img = super().__call__(img)
|
||||||
|
|
||||||
|
|
|
@ -25,7 +25,7 @@ NUM_EPOCHS = 240
|
||||||
|
|
||||||
|
|
||||||
class GridMask(object):
|
class GridMask(object):
|
||||||
def __init__(self, d1, d2, rotate=1, ratio=0.5, mode=0, prob=1.):
|
def __init__(self, d1=96, d2=224, rotate=1, ratio=0.5, mode=0, prob=1.):
|
||||||
self.d1 = d1
|
self.d1 = d1
|
||||||
self.d2 = d2
|
self.d2 = d2
|
||||||
self.rotate = rotate
|
self.rotate = rotate
|
||||||
|
|
|
@ -20,7 +20,7 @@ import random
|
||||||
|
|
||||||
|
|
||||||
class RandAugment(object):
|
class RandAugment(object):
|
||||||
def __init__(self, num_layers, magnitude, fillcolor=(128, 128, 128)):
|
def __init__(self, num_layers=2, magnitude=5, fillcolor=(128, 128, 128)):
|
||||||
self.num_layers = num_layers
|
self.num_layers = num_layers
|
||||||
self.magnitude = magnitude
|
self.magnitude = magnitude
|
||||||
self.max_level = 10
|
self.max_level = 10
|
||||||
|
|
Loading…
Reference in New Issue