parent
aea712cc87
commit
e0a6e5bf38
|
@ -28,7 +28,6 @@ from ppcls.utils import logger
|
|||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.arch.slim import prune_model, quantize_model
|
||||
|
||||
|
||||
__all__ = ["build_model", "RecModel", "DistillationModel"]
|
||||
|
||||
|
||||
|
@ -82,13 +81,11 @@ class RecModel(TheseusLayer):
|
|||
out["backbone"] = x
|
||||
if self.neck is not None:
|
||||
x = self.neck(x)
|
||||
out["neck"] = x
|
||||
out["features"] = x
|
||||
if self.head is not None:
|
||||
y = self.head(x, label)
|
||||
out["neck"] = x
|
||||
else:
|
||||
y = None
|
||||
out["logits"] = y
|
||||
out["logits"] = y
|
||||
return out
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
# global configs
|
||||
# global configs
|
||||
Global:
|
||||
checkpoints: null
|
||||
pretrained_model: null
|
||||
|
@ -85,11 +84,6 @@ Loss:
|
|||
key: "logits"
|
||||
model_name_pairs:
|
||||
- ["Student", "Teacher"]
|
||||
- DistillationDMLLoss:
|
||||
weight: 1.0
|
||||
key: "logits"
|
||||
model_name_pairs:
|
||||
- ["Student", "Teacher"]
|
||||
Eval:
|
||||
- DistillationGTCELoss:
|
||||
weight: 1.0
|
||||
|
|
|
@ -57,7 +57,7 @@ Optimizer:
|
|||
momentum: 0.9
|
||||
lr:
|
||||
name: Cosine
|
||||
learning_rate: 1.3
|
||||
learning_rate: 0.65
|
||||
warmup_epoch: 5
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
|
|
|
@ -69,7 +69,7 @@ class DistillationGTCELoss(CELoss):
|
|||
|
||||
def forward(self, predicts, batch):
|
||||
loss_dict = dict()
|
||||
for _, name in enumerate(self.model_names):
|
||||
for name in self.model_names:
|
||||
out = predicts[name]
|
||||
if self.key is not None:
|
||||
out = out[self.key]
|
||||
|
|
|
@ -42,8 +42,8 @@ class DMLLoss(nn.Layer):
|
|||
|
||||
def forward(self, x, target):
|
||||
if self.act is not None:
|
||||
x = F.softmax(x)
|
||||
target = F.softmax(target)
|
||||
x = self.act(x)
|
||||
target = self.act(target)
|
||||
loss = self._kldiv(x, target) + self._kldiv(target, x)
|
||||
loss = loss / 2
|
||||
loss = paddle.mean(loss)
|
||||
|
|
Loading…
Reference in New Issue