From cd5769f5d999662cf6f9a59ec08c78ce0d5b7ef8 Mon Sep 17 00:00:00 2001 From: cuicheng01 <45199522+cuicheng01@users.noreply.github.com> Date: Wed, 7 Jul 2021 19:40:59 +0800 Subject: [PATCH 1/2] Update README_ch.md --- README_ch.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README_ch.md b/README_ch.md index 5db9f20e7..d08d01642 100644 --- a/README_ch.md +++ b/README_ch.md @@ -10,7 +10,7 @@ - 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。 - 2021.06.22,23,24 PaddleClas官方研发团队带来技术深入解读三日直播课。课程回放:[https://aistudio.baidu.com/aistudio/course/introduce/24519](https://aistudio.baidu.com/aistudio/course/introduce/24519) -- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件。新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。新增LeViT、Twins、TNT、DLA、HarDNet、RedNet系列24个预训练模型。 +- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件。新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。新增LeViT、Twins、TNT、DLA、HarDNet、RedNet系列30个预训练模型。 - [more](./docs/zh_CN/update_history.md) ## 特性 From 2f780911d3ee6ea26610b5f1f4b7939ba783f9c4 Mon Sep 17 00:00:00 2001 From: cuicheng01 <45199522+cuicheng01@users.noreply.github.com> Date: Wed, 7 Jul 2021 19:46:40 +0800 Subject: [PATCH 2/2] Update ImageNet_models_en.md --- docs/en/ImageNet_models_en.md | 1 - 1 file changed, 1 deletion(-) diff --git a/docs/en/ImageNet_models_en.md b/docs/en/ImageNet_models_en.md index e8b5099f4..743337e46 100644 --- a/docs/en/ImageNet_models_en.md +++ b/docs/en/ImageNet_models_en.md @@ -107,7 +107,6 @@ MobileNetV3_
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | | MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | | MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | -[Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | | ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) | | ShuffleNetV2_
x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) | | ShuffleNetV2_
x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) |