update PULC demo docs
parent
b982f63df4
commit
e6ef60e12b
|
@ -0,0 +1,481 @@
|
|||
# PULC 清晰度评估模型
|
||||
|
||||
------
|
||||
|
||||
|
||||
## 目录
|
||||
|
||||
- [1. 模型和应用场景介绍](#1)
|
||||
- [2. 模型快速体验](#2)
|
||||
- [2.1 安装 paddlepaddle](#2.1)
|
||||
- [2.2 安装 paddleclas](#2.2)
|
||||
- [2.3 预测](#2.3)
|
||||
- [3. 模型训练、评估和预测](#3)
|
||||
- [3.1 环境配置](#3.1)
|
||||
- [3.2 数据准备](#3.2)
|
||||
- [3.2.1 数据集来源](#3.2.1)
|
||||
- [3.2.2 数据集获取](#3.2.2)
|
||||
- [3.3 模型训练](#3.3)
|
||||
- [3.4 模型评估](#3.4)
|
||||
- [3.5 模型预测](#3.5)
|
||||
- [4. 模型压缩](#4)
|
||||
- [4.1 SKL-UGI 知识蒸馏](#4.1)
|
||||
- [4.1.1 教师模型训练](#4.1.1)
|
||||
- [4.1.2 蒸馏训练](#4.1.2)
|
||||
- [5. 超参搜索](#5)
|
||||
- [6. 模型推理部署](#6)
|
||||
- [6.1 推理模型准备](#6.1)
|
||||
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
|
||||
- [6.1.2 直接下载 inference 模型](#6.1.2)
|
||||
- [6.2 基于 Python 预测引擎推理](#6.2)
|
||||
- [6.2.1 预测单张图像](#6.2.1)
|
||||
- [6.2.2 基于文件夹的批量预测](#6.2.2)
|
||||
- [6.3 基于 C++ 预测引擎推理](#6.3)
|
||||
- [6.4 服务化部署](#6.4)
|
||||
- [6.5 端侧部署](#6.5)
|
||||
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
|
||||
|
||||
|
||||
<a name="1"></a>
|
||||
|
||||
## 1. 模型和应用场景介绍
|
||||
|
||||
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight image Classification)快速构建轻量级、高精度、可落地的清晰度评估的分类模型。该模型返回图片清晰或者模糊的标签和概率值,该模型可以广泛应用于直播场景、审核场景、海量数据过滤场景等,也可以用于很多视觉任务的后处理中,助理视觉任务整体精度的提升,进而提升相关产品的用户满意度。
|
||||
|
||||
下表列出了清晰度评估模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PP-LCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
|
||||
|
||||
|
||||
| 模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 |
|
||||
|-------|-----------|----------|---------------|---------------|
|
||||
| SwinTranformer_tiny | - | - | 111 | 使用 ImageNet 预训练模型 |
|
||||
| MobileNetV3_small_x0_35 | - | 2.85 | 2.6 | 使用 ImageNet 预训练模型 |
|
||||
| PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 ImageNet 预训练模型 |
|
||||
| PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 SSLD 预训练模型 |
|
||||
| PPLCNet_x1_0 | - | 2.13 | 7.0 | 使用 SSLD 预训练模型+EDA 策略|
|
||||
| <b>PPLCNet_x1_0<b> | <b>95.30<b> | <b>2.13<b> | <b>7.0<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
|
||||
|
||||
**备注:**
|
||||
|
||||
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
|
||||
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)。
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
|
||||
## 2. 模型快速体验
|
||||
|
||||
<a name="2.1"></a>
|
||||
|
||||
### 2.1 安装 paddlepaddle
|
||||
|
||||
- 您的机器安装的是 CUDA9 或 CUDA10,请运行以下命令安装
|
||||
|
||||
```bash
|
||||
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
|
||||
```
|
||||
|
||||
- 您的机器是CPU,请运行以下命令安装
|
||||
|
||||
```bash
|
||||
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
|
||||
```
|
||||
|
||||
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
|
||||
|
||||
<a name="2.2"></a>
|
||||
|
||||
### 2.2 安装 paddleclas
|
||||
|
||||
使用如下命令快速安装 paddleclas
|
||||
|
||||
```
|
||||
pip3 install paddleclas
|
||||
```
|
||||
|
||||
<a name="2.3"></a>
|
||||
|
||||
### 2.3 预测
|
||||
|
||||
点击[这里](https://paddleclas.bj.bcebos.com/data/PULC/pulc_demo_imgs.zip)下载 demo 数据并解压,然后在终端中切换到相应目录。
|
||||
|
||||
* 使用命令行快速预测
|
||||
|
||||
```bash
|
||||
paddleclas --model_name=clarity_assessment --infer_imgs=pulc_demo_imgs/clarity_assessment/blured_demo.jpg
|
||||
```
|
||||
|
||||
结果如下:
|
||||
```
|
||||
>>> result
|
||||
class_ids: [1], scores: [0.9955421453341842], label_names: ['blured'], filename: pulc_demo_imgs/clarity_assessment/blured_demo.jpg
|
||||
Predict complete!
|
||||
```
|
||||
|
||||
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
|
||||
|
||||
|
||||
* 在 Python 代码中预测
|
||||
```python
|
||||
import paddleclas
|
||||
model = paddleclas.PaddleClas(model_name="clarity_assessment")
|
||||
result = model.predict(input_data="pulc_demo_imgs/clarity_assessment/blured_demo.jpg")
|
||||
print(next(result))
|
||||
```
|
||||
|
||||
**备注**:`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="clarity_assessment", batch_size=2)`, 使用默认的代码返回结果示例如下:
|
||||
|
||||
```
|
||||
>>> result
|
||||
[{'class_ids': [1], 'scores': [0.9955421453341842], 'label_names': ['blured'], 'filename': 'pulc_demo_imgs/clarity_assessment/blured_demo.jpg'}]
|
||||
```
|
||||
|
||||
<a name="3"></a>
|
||||
|
||||
## 3. 模型训练、评估和预测
|
||||
|
||||
<a name="3.1"></a>
|
||||
|
||||
### 3.1 环境配置
|
||||
|
||||
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
|
||||
|
||||
<a name="3.2"></a>
|
||||
|
||||
### 3.2 数据准备
|
||||
|
||||
<a name="3.2.1"></a>
|
||||
|
||||
#### 3.2.1 数据集来源
|
||||
|
||||
由于目前缺乏真实场景中的模糊数据,所以只能合成数据,我们基于 ImageNet、COCO 等公开数据集,在训练时,在线合成了很多模糊的数据,合成方法在[3.2.2](#3.2.2)中介绍。
|
||||
|
||||
<a name="3.2.2"></a>
|
||||
|
||||
#### 3.2.2 数据集获取
|
||||
|
||||
我们将公开数据处理成 PaddleClas 要求的[数据格式](../../training/single_label_classification/dataset.md#1-数据集格式说明) 。之后在训练的预处理中增加了两种模糊方式,分别是运动模糊和高斯模糊。二者的处理代码如下所示:
|
||||
|
||||
```
|
||||
# 运动模糊
|
||||
def _motion_blur(img, max_ksize=12, max_angle=45):
|
||||
degree = np.random.choice(np.arange(5, max_ksize, 2))
|
||||
angle = np.random.choice(np.arange(-1 * max_angle, max_angle))
|
||||
|
||||
M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
|
||||
motion_blur_kernel = np.diag(np.ones(degree))
|
||||
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M,(degree, degree))
|
||||
|
||||
motion_blur_kernel = motion_blur_kernel / degree
|
||||
blurred = cv2.filter2D(img, -1, motion_blur_kernel)
|
||||
|
||||
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
|
||||
img = np.array(blurred, dtype=np.uint8)
|
||||
return img
|
||||
|
||||
# 高斯模糊
|
||||
def _gaussian_blur(img, max_ksize=12):
|
||||
ksize = (np.random.choice(np.arange(5, max_ksize, 2)),
|
||||
np.random.choice(np.arange(5, max_ksize, 2)))
|
||||
img = cv2.GaussianBlur(img, ksize, 0)
|
||||
return img
|
||||
```
|
||||
|
||||
在线数据模糊前后的图像对比如下图所示:
|
||||
<center><img src='https://commingsoon' width=800></center>
|
||||
|
||||
在训练时,数据处理部分会按照概率将输入图片模糊化,当前默认的概率为0.5,即训练的每一个 epoch 有一半的图片被模糊,当图片被模糊时,运动模糊和高斯模糊的概率各占一半。我们无需在 `train_list.txt` 中指定图片是否模糊,默认使用的公开数据集均为清晰图片,所有的模糊处理均在预处理中实现。其中,图片被模糊化后的标签为 1,否则标签为 0。
|
||||
|
||||
进入 PaddleClas 目录。
|
||||
|
||||
```
|
||||
cd path_to_PaddleClas
|
||||
```
|
||||
|
||||
进入 `dataset/` 目录,下载并解压清晰度评估场景的数据。
|
||||
|
||||
```shell
|
||||
cd dataset
|
||||
wget https://paddleclas.bj.bcebos.com/data/PULC/clarity_assessment.tar
|
||||
tar -xf clarity_assessment.tar
|
||||
cd ../
|
||||
```
|
||||
|
||||
执行上述命令后,`dataset/` 下存在 `clarity_assessment` 目录,该目录中具有以下数据:
|
||||
|
||||
```
|
||||
├── train
|
||||
│ ├── 0
|
||||
│ │ ├── 10021.jpg
|
||||
│ │ ├── 10038.jpg
|
||||
│ │ ├── ...
|
||||
│ └── 1
|
||||
│ ├── 10016.jpg
|
||||
│ ├── 10028.jpg
|
||||
│ ├── ...
|
||||
├── train_list.txt
|
||||
├── val
|
||||
│ ├── 0
|
||||
│ │ ├── 10077.jpg
|
||||
│ │ ├── 10184.jpg
|
||||
│ │ ├── ...
|
||||
│ └── 1
|
||||
│ ├── 10091.jpg
|
||||
│ ├── 10098.jpg
|
||||
│ ├── ...
|
||||
└── val_list.txt
|
||||
```
|
||||
|
||||
其中 `train/` 和 `val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。
|
||||
**备注:**
|
||||
|
||||
* 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明) 。
|
||||
|
||||
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md#3.2)。
|
||||
|
||||
|
||||
<a name="3.3"></a>
|
||||
|
||||
### 3.3 模型训练
|
||||
|
||||
|
||||
在 `ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml
|
||||
```
|
||||
|
||||
验证集的最佳指标在 `0.94-0.95` 之间(数据集较小,容易造成波动)。
|
||||
|
||||
**备注:** 由于此处使用的是全量数据的子集,所以指标会略低,下同。本案例提供的预训练模型和 inference 模型是经过全量数据训练得到的,您可以直接下载使用。
|
||||
|
||||
<a name="3.4"></a>
|
||||
|
||||
### 3.4 模型评估
|
||||
|
||||
训练好模型之后,可以通过以下命令实现对模型指标的评估。
|
||||
|
||||
```bash
|
||||
python3 tools/eval.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
|
||||
```
|
||||
|
||||
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
|
||||
|
||||
<a name="3.5"></a>
|
||||
|
||||
### 3.5 模型预测
|
||||
|
||||
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
|
||||
|
||||
```python
|
||||
python3 tools/infer.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
|
||||
```
|
||||
|
||||
输出结果如下:
|
||||
|
||||
```
|
||||
[{'class_ids': [1], 'scores': [0.9999976], 'label_names': ['blured'], 'file_name': 'deploy/images/PULC/clarity_assessment/blured_demo.jpg'}]
|
||||
```
|
||||
|
||||
**备注:**
|
||||
|
||||
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
|
||||
|
||||
* 默认是对 `deploy/images/PULC/clarity_assessment/blured_demo.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
|
||||
|
||||
|
||||
<a name="4"></a>
|
||||
|
||||
## 4. 模型压缩
|
||||
|
||||
<a name="4.1"></a>
|
||||
|
||||
### 4.1 SKL-UGI 知识蒸馏
|
||||
|
||||
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)。
|
||||
|
||||
<a name="4.1.1"></a>
|
||||
|
||||
#### 4.1.1 教师模型训练
|
||||
|
||||
复用 `ppcls/configs/PULC/clarity_assessment/PPLCNet/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
|
||||
-o Arch.name=ResNet101_vd
|
||||
```
|
||||
|
||||
验证集的最佳指标为 `0.95-0.96` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。
|
||||
|
||||
<a name="4.1.2"></a>
|
||||
|
||||
#### 4.1.2 蒸馏训练
|
||||
|
||||
配置文件`ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0_distillation.yaml \
|
||||
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
|
||||
```
|
||||
|
||||
验证集的最佳指标为 `0.945-0.955` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。
|
||||
|
||||
|
||||
<a name="5"></a>
|
||||
|
||||
## 5. 超参搜索
|
||||
|
||||
在 [3.3 节](#3.3)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
|
||||
|
||||
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
|
||||
|
||||
<a name="6"></a>
|
||||
|
||||
## 6. 模型推理部署
|
||||
|
||||
<a name="6.1"></a>
|
||||
|
||||
### 6.1 推理模型准备
|
||||
|
||||
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 [Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
|
||||
|
||||
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
|
||||
|
||||
<a name="6.1.1"></a>
|
||||
|
||||
### 6.1.1 基于训练得到的权重导出 inference 模型
|
||||
|
||||
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
|
||||
|
||||
```bash
|
||||
python3 tools/export_model.py \
|
||||
-c ./ppcls/configs/PULC/clarity_assessment/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model=output/DistillationModel/best_model_student \
|
||||
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_clarity_assessment_infer
|
||||
```
|
||||
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_clarity_assessment_infer` 文件夹,`models` 文件夹下应有如下文件结构:
|
||||
|
||||
```
|
||||
├── PPLCNet_x1_0_clarity_assessment_infer
|
||||
│ ├── inference.pdiparams
|
||||
│ ├── inference.pdiparams.info
|
||||
│ └── inference.pdmodel
|
||||
```
|
||||
|
||||
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
|
||||
|
||||
<a name="6.1.2"></a>
|
||||
|
||||
### 6.1.2 直接下载 inference 模型
|
||||
|
||||
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
|
||||
|
||||
```
|
||||
cd deploy/models
|
||||
# 下载 inference 模型并解压
|
||||
wget https://paddleclas.bj.bcebos.com/models/PULC/clarity_assessment_infer.tar && tar -xf clarity_assessment_infer.tar
|
||||
```
|
||||
|
||||
解压完毕后,`models` 文件夹下应有如下文件结构:
|
||||
|
||||
```
|
||||
├── clarity_assessment_infer
|
||||
│ ├── inference.pdiparams
|
||||
│ ├── inference.pdiparams.info
|
||||
│ └── inference.pdmodel
|
||||
```
|
||||
|
||||
<a name="6.2"></a>
|
||||
|
||||
### 6.2 基于 Python 预测引擎推理
|
||||
|
||||
|
||||
<a name="6.2.1"></a>
|
||||
|
||||
#### 6.2.1 预测单张图像
|
||||
|
||||
返回 `deploy` 目录:
|
||||
|
||||
```
|
||||
cd ../
|
||||
```
|
||||
|
||||
运行下面的命令,对图像 `./images/PULC/clarity_assessment/blured_demo.jpg` 进行清晰度评估。
|
||||
|
||||
```shell
|
||||
# 使用下面的命令使用 GPU 进行预测
|
||||
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml
|
||||
# 使用下面的命令使用 CPU 进行预测
|
||||
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml -o Global.use_gpu=False
|
||||
```
|
||||
|
||||
输出结果如下。
|
||||
|
||||
```
|
||||
blured.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['blured']
|
||||
```
|
||||
|
||||
<a name="6.2.2"></a>
|
||||
|
||||
#### 6.2.2 基于文件夹的批量预测
|
||||
|
||||
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
|
||||
|
||||
```shell
|
||||
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
|
||||
python3.7 python/predict_cls.py -c configs/PULC/clarity_assessment/inference_clarity_assessment.yaml -o Global.infer_imgs="./images/PULC/clarity_assessment/"
|
||||
```
|
||||
|
||||
终端中会输出该文件夹内所有图像的分类结果,如下所示。
|
||||
|
||||
```
|
||||
clarity_demo.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['clarity']
|
||||
blured_demo.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['blured']
|
||||
```
|
||||
|
||||
其中,`blured` 表示该图是模糊图片,`clarity` 表示该图是清晰图片。
|
||||
|
||||
<a name="6.3"></a>
|
||||
|
||||
### 6.3 基于 C++ 预测引擎推理
|
||||
|
||||
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
|
||||
|
||||
<a name="6.4"></a>
|
||||
|
||||
### 6.4 服务化部署
|
||||
|
||||
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
|
||||
|
||||
<a name="6.5"></a>
|
||||
|
||||
### 6.5 端侧部署
|
||||
|
||||
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
|
||||
|
||||
<a name="6.6"></a>
|
||||
|
||||
### 6.6 Paddle2ONNX 模型转换与预测
|
||||
|
||||
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
|
|
@ -0,0 +1,461 @@
|
|||
# PULC 有无广告码分类模型
|
||||
|
||||
------
|
||||
|
||||
|
||||
## 目录
|
||||
|
||||
- [1. 模型和应用场景介绍](#1)
|
||||
- [2. 模型快速体验](#2)
|
||||
- [2.1 安装 paddlepaddle](#2.1)
|
||||
- [2.2 安装 paddleclas](#2.2)
|
||||
- [2.3 预测](#2.3)
|
||||
- [3. 模型训练、评估和预测](#3)
|
||||
- [3.1 环境配置](#3.1)
|
||||
- [3.2 数据准备](#3.2)
|
||||
- [3.2.1 数据集来源](#3.2.1)
|
||||
- [3.2.2 数据集获取](#3.2.2)
|
||||
- [3.3 模型训练](#3.3)
|
||||
- [3.4 模型评估](#3.4)
|
||||
- [3.5 模型预测](#3.5)
|
||||
- [4. 模型压缩](#4)
|
||||
- [4.1 SKL-UGI 知识蒸馏](#4.1)
|
||||
- [4.1.1 教师模型训练](#4.1.1)
|
||||
- [4.1.2 蒸馏训练](#4.1.2)
|
||||
- [5. 超参搜索](#5)
|
||||
- [6. 模型推理部署](#6)
|
||||
- [6.1 推理模型准备](#6.1)
|
||||
- [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
|
||||
- [6.1.2 直接下载 inference 模型](#6.1.2)
|
||||
- [6.2 基于 Python 预测引擎推理](#6.2)
|
||||
- [6.2.1 预测单张图像](#6.2.1)
|
||||
- [6.2.2 基于文件夹的批量预测](#6.2.2)
|
||||
- [6.3 基于 C++ 预测引擎推理](#6.3)
|
||||
- [6.4 服务化部署](#6.4)
|
||||
- [6.5 端侧部署](#6.5)
|
||||
- [6.6 Paddle2ONNX 模型转换与预测](#6.6)
|
||||
|
||||
|
||||
<a name="1"></a>
|
||||
|
||||
## 1. 模型和应用场景介绍
|
||||
|
||||
该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight image Classification)快速构建轻量级、高精度、可落地的有无广告码的分类模型(这里定义广告码包含:二维码、条形码、小程序码)。该模型可以广泛应用于直播场景、审核场景、海量数据过滤场景等。
|
||||
|
||||
下表列出了判断图片中有无广告码二分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PP-LCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
|
||||
|
||||
|
||||
| 模型 | Tpr(%) | 延时(ms) | 存储(M) | 策略 |
|
||||
|-------|-----------|----------|---------------|---------------|
|
||||
| SwinTranformer_tiny | 95.06 | 95.30 | 111 | 使用 ImageNet 预训练模型 |
|
||||
| MobileNetV3_small_x0_35 | 86.67 | 2.85 | 2.6 | 使用 ImageNet 预训练模型 |
|
||||
| PPLCNet_x1_0 | 93.64 | 2.13 | 7.0 | 使用 ImageNet 预训练模型 |
|
||||
| PPLCNet_x1_0 | 94.44 | 2.13 | 7.0 | 使用 SSLD 预训练模型 |
|
||||
| PPLCNet_x1_0 | 94.62 | 2.13 | 7.0 | 使用 SSLD 预训练模型+EDA 策略|
|
||||
| <b>PPLCNet_x1_0<b> | <b>94.94<b> | <b>2.13<b> | <b>7.0<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
|
||||
|
||||
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 7 个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.8 个百分点,进一步地,当融合EDA策略后,精度可以再提升 0.2 个百分点,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.3 个百分点。此时,PPLCNet_x1_0 达到了 SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
|
||||
|
||||
**备注:**
|
||||
|
||||
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
|
||||
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)。
|
||||
|
||||
|
||||
<a name="2"></a>
|
||||
|
||||
## 2. 模型快速体验
|
||||
|
||||
<a name="2.1"></a>
|
||||
|
||||
### 2.1 安装 paddlepaddle
|
||||
|
||||
- 您的机器安装的是 CUDA9 或 CUDA10,请运行以下命令安装
|
||||
|
||||
```bash
|
||||
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
|
||||
```
|
||||
|
||||
- 您的机器是CPU,请运行以下命令安装
|
||||
|
||||
```bash
|
||||
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
|
||||
```
|
||||
|
||||
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
|
||||
|
||||
<a name="2.2"></a>
|
||||
|
||||
### 2.2 安装 paddleclas
|
||||
|
||||
使用如下命令快速安装 paddleclas
|
||||
|
||||
```
|
||||
pip3 install paddleclas
|
||||
```
|
||||
|
||||
<a name="2.3"></a>
|
||||
|
||||
### 2.3 预测
|
||||
|
||||
点击[这里](https://paddleclas.bj.bcebos.com/data/PULC/pulc_demo_imgs.zip)下载 demo 数据并解压,然后在终端中切换到相应目录。
|
||||
|
||||
* 使用命令行快速预测
|
||||
|
||||
```bash
|
||||
paddleclas --model_name=code_exists --infer_imgs=pulc_demo_imgs/code_exists/contains_code_demo.jpg
|
||||
```
|
||||
|
||||
结果如下:
|
||||
```
|
||||
>>> result
|
||||
class_ids: [1], scores: [0.9955421453341842], label_names: ['contains_code'], filename: pulc_demo_imgs/code_exists/contains_code_demo.jpg
|
||||
Predict complete!
|
||||
```
|
||||
|
||||
**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。
|
||||
|
||||
|
||||
* 在 Python 代码中预测
|
||||
```python
|
||||
import paddleclas
|
||||
model = paddleclas.PaddleClas(model_name="code_exists")
|
||||
result = model.predict(input_data="pulc_demo_imgs/code_exists/contains_code_demo.jpg")
|
||||
print(next(result))
|
||||
```
|
||||
|
||||
**备注**:`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="code_exists", batch_size=2)`, 使用默认的代码返回结果示例如下:
|
||||
|
||||
```
|
||||
>>> result
|
||||
[{'class_ids': [1], 'scores': [0.9955421453341842], 'label_names': ['contains_code'], 'filename': 'pulc_demo_imgs/code_exists/contains_code_demo.jpg'}]
|
||||
```
|
||||
|
||||
<a name="3"></a>
|
||||
|
||||
## 3. 模型训练、评估和预测
|
||||
|
||||
<a name="3.1"></a>
|
||||
|
||||
### 3.1 环境配置
|
||||
|
||||
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
|
||||
|
||||
<a name="3.2"></a>
|
||||
|
||||
### 3.2 数据准备
|
||||
|
||||
<a name="3.2.1"></a>
|
||||
|
||||
#### 3.2.1 数据集来源
|
||||
|
||||
由于目前没有二维码/小程序码/条形码的公开数据集,所以第一步,我们需要收集可能带广告码的数据。收集方式可以写一个简单的爬取数据的脚本,收集好数据之后,我们需要进行一个简单的标注,即标注图像中是否含有广告码。
|
||||
|
||||
<a name="3.2.2"></a>
|
||||
|
||||
#### 3.2.2 数据集获取
|
||||
|
||||
当数据集收集好之后,可以适当处理成 PaddleClas 的要求的数据格式。处理后的图片如下图所示:
|
||||
|
||||
筛选出的图片如下图所示:
|
||||
<center><img src='https://user-images.githubusercontent.com/45199522/197466050-d4a1cf60-85f0-4ffe-9cad-14dbfc197d41.png' width=800></center>
|
||||
|
||||
其中,0 表示图像没有广告码,1 表示图中有广告码。
|
||||
|
||||
此处提供了经过上述方法处理好的数据的子集,可以直接下载得到。
|
||||
|
||||
|
||||
进入 PaddleClas 目录。
|
||||
|
||||
```
|
||||
cd path_to_PaddleClas
|
||||
```
|
||||
|
||||
进入 `dataset/` 目录,下载并解压有无广告码场景的数据。
|
||||
|
||||
```shell
|
||||
cd dataset
|
||||
wget https://paddleclas.bj.bcebos.com/data/PULC/code_exists.tar
|
||||
tar -xf code_exists.tar
|
||||
cd ../
|
||||
```
|
||||
|
||||
执行上述命令后,`dataset/` 下存在 `code_exists` 目录,该目录中具有以下数据:
|
||||
|
||||
```
|
||||
├── train
|
||||
│ ├── 0
|
||||
│ │ ├── 10021.jpg
|
||||
│ │ ├── 10038.jpg
|
||||
│ │ ├── ...
|
||||
│ └── 1
|
||||
│ ├── 10016.jpg
|
||||
│ ├── 10028.jpg
|
||||
│ ├── ...
|
||||
├── train_list.txt
|
||||
├── val
|
||||
│ ├── 0
|
||||
│ │ ├── 10077.jpg
|
||||
│ │ ├── 10184.jpg
|
||||
│ │ ├── ...
|
||||
│ └── 1
|
||||
│ ├── 10091.jpg
|
||||
│ ├── 10098.jpg
|
||||
│ ├── ...
|
||||
└── val_list.txt
|
||||
```
|
||||
|
||||
其中 `train/` 和 `val/` 分别为训练集和验证集。`train_list.txt` 和 `val_list.txt` 分别为训练集和验证集的标签文件。
|
||||
**备注:**
|
||||
|
||||
* 关于 `train_list.txt`、`val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明) 。
|
||||
|
||||
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md#3.2)。
|
||||
|
||||
|
||||
<a name="3.3"></a>
|
||||
|
||||
### 3.3 模型训练
|
||||
|
||||
|
||||
在 `ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml
|
||||
```
|
||||
|
||||
验证集的最佳指标在 `0.93-0.94` 之间(数据集较小,容易造成波动)。
|
||||
|
||||
**备注:** 由于此处使用的是全量数据的子集,所以指标会略低,下同。本案例提供的预训练模型和 inference 模型是经过全量数据训练得到的,您可以直接下载使用。
|
||||
|
||||
<a name="3.4"></a>
|
||||
|
||||
### 3.4 模型评估
|
||||
|
||||
训练好模型之后,可以通过以下命令实现对模型指标的评估。
|
||||
|
||||
```bash
|
||||
python3 tools/eval.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
|
||||
```
|
||||
|
||||
其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
|
||||
|
||||
<a name="3.5"></a>
|
||||
|
||||
### 3.5 模型预测
|
||||
|
||||
模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
|
||||
|
||||
```python
|
||||
python3 tools/infer.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model
|
||||
```
|
||||
|
||||
输出结果如下:
|
||||
|
||||
```
|
||||
[{'class_ids': [1], 'scores': [0.9999976], 'label_names': ['contains_code'], 'file_name': 'deploy/images/PULC/code_exists/contains_code_demo.jpg'}]
|
||||
```
|
||||
|
||||
**备注:**
|
||||
|
||||
* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
|
||||
|
||||
* 默认是对 `deploy/images/PULC/code_exists/contains_code_demo.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
|
||||
|
||||
|
||||
<a name="4"></a>
|
||||
|
||||
## 4. 模型压缩
|
||||
|
||||
<a name="4.1"></a>
|
||||
|
||||
### 4.1 SKL-UGI 知识蒸馏
|
||||
|
||||
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)。
|
||||
|
||||
<a name="4.1.1"></a>
|
||||
|
||||
#### 4.1.1 教师模型训练
|
||||
|
||||
复用 `ppcls/configs/PULC/code_exists/PPLCNet/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml \
|
||||
-o Arch.name=ResNet101_vd
|
||||
```
|
||||
|
||||
验证集的最佳指标为 `0.95-0.96` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。
|
||||
|
||||
<a name="4.1.2"></a>
|
||||
|
||||
#### 4.1.2 蒸馏训练
|
||||
|
||||
配置文件`ppcls/configs/PULC/code_exists/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
|
||||
|
||||
```shell
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python3 -m paddle.distributed.launch \
|
||||
--gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0_distillation.yaml \
|
||||
-o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
|
||||
```
|
||||
|
||||
验证集的最佳指标为 `0.945-0.955` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。
|
||||
|
||||
|
||||
<a name="5"></a>
|
||||
|
||||
## 5. 超参搜索
|
||||
|
||||
在 [3.3 节](#3.3)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
|
||||
|
||||
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
|
||||
|
||||
<a name="6"></a>
|
||||
|
||||
## 6. 模型推理部署
|
||||
|
||||
<a name="6.1"></a>
|
||||
|
||||
### 6.1 推理模型准备
|
||||
|
||||
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 [Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
|
||||
|
||||
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
|
||||
|
||||
<a name="6.1.1"></a>
|
||||
|
||||
### 6.1.1 基于训练得到的权重导出 inference 模型
|
||||
|
||||
此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
|
||||
|
||||
```bash
|
||||
python3 tools/export_model.py \
|
||||
-c ./ppcls/configs/PULC/code_exists/PPLCNet_x1_0.yaml \
|
||||
-o Global.pretrained_model=output/DistillationModel/best_model_student \
|
||||
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_code_exists_infer
|
||||
```
|
||||
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_code_exists_infer` 文件夹,`models` 文件夹下应有如下文件结构:
|
||||
|
||||
```
|
||||
├── PPLCNet_x1_0_code_exists_infer
|
||||
│ ├── inference.pdiparams
|
||||
│ ├── inference.pdiparams.info
|
||||
│ └── inference.pdmodel
|
||||
```
|
||||
|
||||
**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
|
||||
|
||||
<a name="6.1.2"></a>
|
||||
|
||||
### 6.1.2 直接下载 inference 模型
|
||||
|
||||
[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
|
||||
|
||||
```
|
||||
cd deploy/models
|
||||
# 下载 inference 模型并解压
|
||||
wget https://paddleclas.bj.bcebos.com/models/PULC/code_exists_infer.tar && tar -xf code_exists_infer.tar
|
||||
```
|
||||
|
||||
解压完毕后,`models` 文件夹下应有如下文件结构:
|
||||
|
||||
```
|
||||
├── code_exists_infer
|
||||
│ ├── inference.pdiparams
|
||||
│ ├── inference.pdiparams.info
|
||||
│ └── inference.pdmodel
|
||||
```
|
||||
|
||||
<a name="6.2"></a>
|
||||
|
||||
### 6.2 基于 Python 预测引擎推理
|
||||
|
||||
|
||||
<a name="6.2.1"></a>
|
||||
|
||||
#### 6.2.1 预测单张图像
|
||||
|
||||
返回 `deploy` 目录:
|
||||
|
||||
```
|
||||
cd ../
|
||||
```
|
||||
|
||||
运行下面的命令,对图像 `./images/PULC/code_exists/contains_code_demo.jpg` 进行有无广告码分类。
|
||||
|
||||
```shell
|
||||
# 使用下面的命令使用 GPU 进行预测
|
||||
python3.7 python/predict_cls.py -c configs/PULC/code_exists/inference_code_exists.yaml
|
||||
# 使用下面的命令使用 CPU 进行预测
|
||||
python3.7 python/predict_cls.py -c configs/PULC/code_exists/inference_code_exists.yaml -o Global.use_gpu=False
|
||||
```
|
||||
|
||||
输出结果如下。
|
||||
|
||||
```
|
||||
contains_code.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['contains_code']
|
||||
```
|
||||
|
||||
<a name="6.2.2"></a>
|
||||
|
||||
#### 6.2.2 基于文件夹的批量预测
|
||||
|
||||
如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
|
||||
|
||||
```shell
|
||||
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
|
||||
python3.7 python/predict_cls.py -c configs/PULC/code_exists/inference_code_exists.yaml -o Global.infer_imgs="./images/PULC/code_exists/"
|
||||
```
|
||||
|
||||
终端中会输出该文件夹内所有图像的分类结果,如下所示。
|
||||
|
||||
```
|
||||
no_code_demo.jpg: class id(s): [0], score(s): [1.00], label_name(s): ['no_code']
|
||||
contains_code_demo.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['contains_code']
|
||||
```
|
||||
|
||||
其中,`contains_code` 表示该图里存在广告码,`no-code` 表示该图里不存在广告码。
|
||||
|
||||
<a name="6.3"></a>
|
||||
|
||||
### 6.3 基于 C++ 预测引擎推理
|
||||
|
||||
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
|
||||
|
||||
<a name="6.4"></a>
|
||||
|
||||
### 6.4 服务化部署
|
||||
|
||||
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
|
||||
|
||||
<a name="6.5"></a>
|
||||
|
||||
### 6.5 端侧部署
|
||||
|
||||
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
|
||||
|
||||
<a name="6.6"></a>
|
||||
|
||||
### 6.6 Paddle2ONNX 模型转换与预测
|
||||
|
||||
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
|
||||
|
||||
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
|
|
@ -17,10 +17,13 @@
|
|||
| textline_orientation |[PULC文本行方向分类](PULC_textline_orientation.md)|判断文本行的方向,可以区分0度、180度| 96.01 |7.0M|2.72ms|[推理模型](https://paddleclas.bj.bcebos.com/models/PULC/inference/textline_orientation_infer.tar) / [预训练模型](https://paddleclas.bj.bcebos.com/models/PULC/pretrained/textline_orientation_pretrained.pdparams)|
|
||||
| language_classification |[PULC语种分类](PULC_language_classification.md)|判断文本行的语种,可以区分10种常见的语种| 99.26 |7.1M|2.58ms|[推理模型](https://paddleclas.bj.bcebos.com/models/PULC/inference/language_classification_infer.tar) / [预训练模型](https://paddleclas.bj.bcebos.com/models/PULC/pretrained/language_classification_pretrained.pdparams)|
|
||||
| table_attribute |[PULC表格属性识别](PULC_table_attribute.md)|表格属性识别,可以识别表格是否为拍照、表格数量、表格颜色、表格清晰度、表格有无干扰、表格角度6个属性| 88.1 |7.1M|2.58ms|[推理模型](https://paddleclas.bj.bcebos.com/models/PULC/inference/table_attribute_infer.tar) / [预训练模型](https://paddleclas.bj.bcebos.com/models/PULC/pretrained/table_attribute_pretrained.pdparams)|
|
||||
| code_exists |[PULC有无广告码](PULC_code_exists.md)|判断图片中有无广告码,其中,这里广告码包含二维码、条形码、小程序码| 94.9 |7.0M|2.13ms|[推理模型](https://paddleclas.bj.bcebos.com/models/PULC/inference/code_exists_infer.tar) / [预训练模型](https://paddleclas.bj.bcebos.com/models/PULC/pretrained/code_exists_pretrained.pdparams)|
|
||||
| clarity_assessment |[PULC清晰度评估](PULC_clarity_assessment.md)|判断图片的清晰度| 95.3 |7.0M|2.13ms|[推理模型](https://paddleclas.bj.bcebos.com/models/PULC/inference/clarity_assessment_infer.tar) / [预训练模型](https://paddleclas.bj.bcebos.com/models/PULC/pretrained/clarity_assessment_pretrained.pdparams)|
|
||||
|
||||
|
||||
|
||||
**备注:**
|
||||
|
||||
* 以上所有的模型的 backbone 均为 PPLCNet_x1_0,部分模型大小不同是由于分类的输出大小不同导致的,推理耗时是基于Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,其中测试过程开启 MKLDNN 加速策略,线程数为10。速度测试过程会有轻微波动。
|
||||
|
||||
* person_exists、safety_helmet、car_exists 的评测指标为 TprAtFpr,person_attribute、vehicle_attribute、table_attribute 的评测指标为mA、traffic_sign、text_image_orientation、textline_orientation、language_classification的评测指标为Top-1 Acc。
|
||||
* person_exists、safety_helmet、car_exists 的评测指标为 TprAtFpr,person_attribute、vehicle_attribute、table_attribute 的评测指标为mA、traffic_sign、text_image_orientation、textline_orientation、language_classification、code_exists、clarity_assessment 的评测指标为Top-1 Acc。
|
||||
|
|
Loading…
Reference in New Issue