fix googlenet
parent
8200c7ba18
commit
edd7382dd3
|
@ -1,7 +1,10 @@
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
import math
|
||||
|
||||
__all__ = ['GoogLeNet']
|
||||
|
@ -10,12 +13,11 @@ __all__ = ['GoogLeNet']
|
|||
def xavier(channels, filter_size, name):
|
||||
stdv = (3.0 / (filter_size**2 * channels))**0.5
|
||||
param_attr = ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||||
name=name + "_weights")
|
||||
initializer=Uniform(-stdv, stdv), name=name + "_weights")
|
||||
return param_attr
|
||||
|
||||
|
||||
class ConvLayer(fluid.dygraph.Layer):
|
||||
class ConvLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
|
@ -26,15 +28,14 @@ class ConvLayer(fluid.dygraph.Layer):
|
|||
name=None):
|
||||
super(ConvLayer, self).__init__()
|
||||
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
self._conv = Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=num_filters,
|
||||
kernel_size=filter_size,
|
||||
stride=stride,
|
||||
padding=(filter_size - 1) // 2,
|
||||
groups=groups,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name=name + "_weights"),
|
||||
weight_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
|
||||
def forward(self, inputs):
|
||||
|
@ -42,7 +43,7 @@ class ConvLayer(fluid.dygraph.Layer):
|
|||
return y
|
||||
|
||||
|
||||
class Inception(fluid.dygraph.Layer):
|
||||
class Inception(nn.Layer):
|
||||
def __init__(self,
|
||||
input_channels,
|
||||
output_channels,
|
||||
|
@ -88,12 +89,12 @@ class Inception(fluid.dygraph.Layer):
|
|||
pool = self._pool(inputs)
|
||||
convprj = self._convprj(pool)
|
||||
|
||||
cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
|
||||
cat = fluid.layers.relu(cat)
|
||||
cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1)
|
||||
cat = F.relu(cat)
|
||||
return cat
|
||||
|
||||
|
||||
class GoogleNetDY(fluid.dygraph.Layer):
|
||||
class GoogleNetDY(nn.Layer):
|
||||
def __init__(self, class_dim=1000):
|
||||
super(GoogleNetDY, self).__init__()
|
||||
self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
|
||||
|
@ -124,40 +125,37 @@ class GoogleNetDY(fluid.dygraph.Layer):
|
|||
|
||||
self._pool_5 = Pool2D(pool_size=7, pool_type='avg', pool_stride=7)
|
||||
|
||||
self._drop = fluid.dygraph.Dropout(p=0.4)
|
||||
self._drop = Dropout(p=0.4)
|
||||
self._fc_out = Linear(
|
||||
1024,
|
||||
class_dim,
|
||||
param_attr=xavier(1024, 1, "out"),
|
||||
bias_attr=ParamAttr(name="out_offset"),
|
||||
act="softmax")
|
||||
weight_attr=xavier(1024, 1, "out"),
|
||||
bias_attr=ParamAttr(name="out_offset"))
|
||||
self._pool_o1 = Pool2D(pool_size=5, pool_stride=3, pool_type="avg")
|
||||
self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
|
||||
self._fc_o1 = Linear(
|
||||
1152,
|
||||
1024,
|
||||
param_attr=xavier(2048, 1, "fc_o1"),
|
||||
bias_attr=ParamAttr(name="fc_o1_offset"),
|
||||
act="relu")
|
||||
self._drop_o1 = fluid.dygraph.Dropout(p=0.7)
|
||||
weight_attr=xavier(2048, 1, "fc_o1"),
|
||||
bias_attr=ParamAttr(name="fc_o1_offset"))
|
||||
self._drop_o1 = Dropout(p=0.7)
|
||||
self._out1 = Linear(
|
||||
1024,
|
||||
class_dim,
|
||||
param_attr=xavier(1024, 1, "out1"),
|
||||
bias_attr=ParamAttr(name="out1_offset"),
|
||||
act="softmax")
|
||||
weight_attr=xavier(1024, 1, "out1"),
|
||||
bias_attr=ParamAttr(name="out1_offset"))
|
||||
self._pool_o2 = Pool2D(pool_size=5, pool_stride=3, pool_type='avg')
|
||||
self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
|
||||
self._fc_o2 = Linear(
|
||||
1152,
|
||||
1024,
|
||||
param_attr=xavier(2048, 1, "fc_o2"),
|
||||
weight_attr=xavier(2048, 1, "fc_o2"),
|
||||
bias_attr=ParamAttr(name="fc_o2_offset"))
|
||||
self._drop_o2 = fluid.dygraph.Dropout(p=0.7)
|
||||
self._drop_o2 = Dropout(p=0.7)
|
||||
self._out2 = Linear(
|
||||
1024,
|
||||
class_dim,
|
||||
param_attr=xavier(1024, 1, "out2"),
|
||||
weight_attr=xavier(1024, 1, "out2"),
|
||||
bias_attr=ParamAttr(name="out2_offset"))
|
||||
|
||||
def forward(self, inputs):
|
||||
|
@ -183,19 +181,22 @@ class GoogleNetDY(fluid.dygraph.Layer):
|
|||
|
||||
x = self._pool_5(ince5b)
|
||||
x = self._drop(x)
|
||||
x = fluid.layers.squeeze(x, axes=[2, 3])
|
||||
x = paddle.squeeze(x, axis=[2, 3])
|
||||
out = self._fc_out(x)
|
||||
out = F.softmax(out)
|
||||
|
||||
x = self._pool_o1(ince4a)
|
||||
x = self._conv_o1(x)
|
||||
x = fluid.layers.flatten(x)
|
||||
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
|
||||
x = self._fc_o1(x)
|
||||
x = F.relu(x)
|
||||
x = self._drop_o1(x)
|
||||
out1 = self._out1(x)
|
||||
out1 = F.softmax(out1)
|
||||
|
||||
x = self._pool_o2(ince4d)
|
||||
x = self._conv_o2(x)
|
||||
x = fluid.layers.flatten(x)
|
||||
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
|
||||
x = self._fc_o2(x)
|
||||
x = self._drop_o2(x)
|
||||
out2 = self._out2(x)
|
||||
|
|
|
@ -12,8 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.modeling import architectures
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
@ -24,6 +22,9 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
|
|||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||||
|
||||
from ppcls.modeling import architectures
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
|
||||
|
||||
def parse_args():
|
||||
def str2bool(v):
|
||||
|
@ -108,7 +109,10 @@ def main():
|
|||
data = fluid.dygraph.to_variable(data)
|
||||
net.eval()
|
||||
outputs = net(data)
|
||||
outputs = fluid.layers.softmax(outputs)
|
||||
if args.model == "GoogLeNet":
|
||||
outputs = outputs[0]
|
||||
else:
|
||||
outputs = fluid.layers.softmax(outputs)
|
||||
outputs = outputs.numpy()
|
||||
|
||||
probs = postprocess(outputs)
|
||||
|
|
Loading…
Reference in New Issue