load pretrained urls for README.md

pull/701/head
lyuwenyu 2021-03-25 14:26:52 +08:00
parent 5af83f4332
commit f1b0e8cca4
1 changed files with 39 additions and 14 deletions

View File

@ -3,15 +3,38 @@ dependencies = ['paddle', 'numpy']
import paddle
from ppcls.modeling.architectures.resnet import ResNet18 as _ResNet18
from ppcls.modeling.architectures.resnet import ResNet34 as _ResNet34
from ppcls.modeling.architectures.resnet import ResNet50 as _ResNet50
from ppcls.modeling.architectures import resnet as _resnet
_checkpoints = {
'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams'
}
# _checkpoints = {
# 'ResNet18': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams',
# 'ResNet34': 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams',
# }
def _load_pretrained_urls():
'''Load pretrained model parameters url from README.md
'''
import re
from collections import OrderedDict
with open('./README.md', 'r') as f:
lines = f.readlines()
lines = [lin for lin in lines if lin.strip().startswith('|') and 'Download link' in lin]
urls = OrderedDict()
for lin in lines:
try:
name = re.findall(r'\|(.*?)\|', lin)[0].strip().replace('<br>', '')
url = re.findall(r'\((.*?)\)', lin)[-1].strip()
if name in url:
urls[name] = url
except:
pass
return urls
_checkpoints = _load_pretrained_urls()
def ResNet18(**kwargs):
@ -19,8 +42,9 @@ def ResNet18(**kwargs):
'''
pretrained = kwargs.pop('pretrained', False)
model = _ResNet18(**kwargs)
model = _resnet.ResNet18(**kwargs)
if pretrained:
assert 'ResNet18' in _checkpoints, 'Not provide `ResNet18` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet18'])
model.set_state_dict(paddle.load(path))
@ -31,13 +55,14 @@ def ResNet18(**kwargs):
def ResNet34(**kwargs):
'''ResNet34
'''
model = _ResNet34(**kwargs)
pretrained = kwargs.pop('pretrained', False)
model = _resnet.ResNet34(**kwargs)
if pretrained:
assert 'ResNet34' in _checkpoints, 'Not provide `ResNet34` pretrained model.'
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNet34'])
model.set_state_dict(paddle.load(path))
return model
def ResNet50(**kwargs):
'''ResNet50
'''
model = _ResNet50(**kwargs)
return model