update code
commit
f2982e5e47
|
@ -64,6 +64,7 @@ from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
|
|||
from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
|
||||
from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
|
||||
from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
|
||||
from ppcls.arch.backbone.model_zoo.van import VAN_tiny
|
||||
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
|
||||
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
|
||||
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
|
||||
|
|
|
@ -0,0 +1,317 @@
|
|||
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Code was heavily based on https://github.com/Visual-Attention-Network/VAN-Classification
|
||||
|
||||
from functools import partial
|
||||
import math
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"VAN_tiny": "", # TODO
|
||||
}
|
||||
|
||||
__all__ = list(MODEL_URLS.keys())
|
||||
|
||||
trunc_normal_ = TruncatedNormal(std=.02)
|
||||
zeros_ = Constant(value=0.)
|
||||
ones_ = Constant(value=1.)
|
||||
|
||||
|
||||
def drop_path(x, drop_prob=0., training=False):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = paddle.to_tensor(1 - drop_prob)
|
||||
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
|
||||
random_tensor = paddle.floor(random_tensor) # binarize
|
||||
output = x.divide(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Layer):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
@paddle.jit.not_to_static
|
||||
def swapdim(x, dim1, dim2):
|
||||
a = list(range(len(x.shape)))
|
||||
a[dim1], a[dim2] = a[dim2], a[dim1]
|
||||
return x.transpose(a)
|
||||
|
||||
|
||||
class Mlp(nn.Layer):
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Conv2D(in_features, hidden_features, 1)
|
||||
self.dwconv = DWConv(hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2D(hidden_features, out_features, 1)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.dwconv(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class LKA(nn.Layer):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.conv0 = nn.Conv2D(dim, dim, 5, padding=2, groups=dim)
|
||||
self.conv_spatial = nn.Conv2D(
|
||||
dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
|
||||
self.conv1 = nn.Conv2D(dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
attn = self.conv0(x)
|
||||
attn = self.conv_spatial(attn)
|
||||
attn = self.conv1(attn)
|
||||
return x * attn
|
||||
|
||||
|
||||
class Attention(nn.Layer):
|
||||
def __init__(self, d_model):
|
||||
super().__init__()
|
||||
self.proj_1 = nn.Conv2D(d_model, d_model, 1)
|
||||
self.activation = nn.GELU()
|
||||
self.spatial_gating_unit = LKA(d_model)
|
||||
self.proj_2 = nn.Conv2D(d_model, d_model, 1)
|
||||
|
||||
def forward(self, x):
|
||||
shorcut = x
|
||||
x = self.proj_1(x)
|
||||
x = self.activation(x)
|
||||
x = self.spatial_gating_unit(x)
|
||||
x = self.proj_2(x)
|
||||
x = x + shorcut
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Layer):
|
||||
def __init__(self,
|
||||
dim,
|
||||
mlp_ratio=4.,
|
||||
drop=0.,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU):
|
||||
super().__init__()
|
||||
self.norm1 = nn.BatchNorm2D(dim)
|
||||
self.attn = Attention(dim)
|
||||
self.drop_path = DropPath(
|
||||
drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = nn.BatchNorm2D(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop)
|
||||
layer_scale_init_value = 1e-2
|
||||
self.layer_scale_1 = self.create_parameter(
|
||||
shape=[dim, 1, 1],
|
||||
default_initializer=Constant(value=layer_scale_init_value))
|
||||
self.layer_scale_2 = self.create_parameter(
|
||||
shape=[dim, 1, 1],
|
||||
default_initializer=Constant(value=layer_scale_init_value))
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.layer_scale_1 * self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.layer_scale_2 * self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class OverlapPatchEmbed(nn.Layer):
|
||||
""" Image to Patch Embedding
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_size=224,
|
||||
patch_size=7,
|
||||
stride=4,
|
||||
in_chans=3,
|
||||
embed_dim=768):
|
||||
super().__init__()
|
||||
self.proj = nn.Conv2D(
|
||||
in_chans,
|
||||
embed_dim,
|
||||
kernel_size=patch_size,
|
||||
stride=stride,
|
||||
padding=patch_size // 2)
|
||||
self.norm = nn.BatchNorm2D(embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
_, _, H, W = x.shape
|
||||
x = self.norm(x)
|
||||
return x, H, W
|
||||
|
||||
|
||||
class VAN(nn.Layer):
|
||||
r""" VAN
|
||||
A PaddlePaddle impl of : `Visual Attention Network` -
|
||||
https://arxiv.org/pdf/2202.09741.pdf
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_size=224,
|
||||
in_chans=3,
|
||||
class_num=1000,
|
||||
embed_dims=[64, 128, 256, 512],
|
||||
mlp_ratios=[4, 4, 4, 4],
|
||||
drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
norm_layer=nn.LayerNorm,
|
||||
depths=[3, 4, 6, 3],
|
||||
num_stages=4,
|
||||
flag=False):
|
||||
super().__init__()
|
||||
if flag == False:
|
||||
self.class_num = class_num
|
||||
self.depths = depths
|
||||
self.num_stages = num_stages
|
||||
|
||||
dpr = [x for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
] # stochastic depth decay rule
|
||||
cur = 0
|
||||
|
||||
for i in range(num_stages):
|
||||
patch_embed = OverlapPatchEmbed(
|
||||
img_size=img_size if i == 0 else img_size // (2**(i + 1)),
|
||||
patch_size=7 if i == 0 else 3,
|
||||
stride=4 if i == 0 else 2,
|
||||
in_chans=in_chans if i == 0 else embed_dims[i - 1],
|
||||
embed_dim=embed_dims[i])
|
||||
|
||||
block = nn.LayerList([
|
||||
Block(
|
||||
dim=embed_dims[i],
|
||||
mlp_ratio=mlp_ratios[i],
|
||||
drop=drop_rate,
|
||||
drop_path=dpr[cur + j]) for j in range(depths[i])
|
||||
])
|
||||
norm = norm_layer(embed_dims[i])
|
||||
cur += depths[i]
|
||||
|
||||
setattr(self, f"patch_embed{i + 1}", patch_embed)
|
||||
setattr(self, f"block{i + 1}", block)
|
||||
setattr(self, f"norm{i + 1}", norm)
|
||||
|
||||
# classification head
|
||||
self.head = nn.Linear(embed_dims[3],
|
||||
class_num) if class_num > 0 else nn.Identity()
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
zeros_(m.bias)
|
||||
ones_(m.weight)
|
||||
elif isinstance(m, nn.Conv2D):
|
||||
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
fan_out //= m._groups
|
||||
m.weight.set_value(
|
||||
paddle.normal(
|
||||
std=math.sqrt(2.0 / fan_out), shape=m.weight.shape))
|
||||
if m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
|
||||
for i in range(self.num_stages):
|
||||
patch_embed = getattr(self, f"patch_embed{i + 1}")
|
||||
block = getattr(self, f"block{i + 1}")
|
||||
norm = getattr(self, f"norm{i + 1}")
|
||||
x, H, W = patch_embed(x)
|
||||
for blk in block:
|
||||
x = blk(x)
|
||||
x = x.flatten(2)
|
||||
x = swapdim(x, 1, 2)
|
||||
x = norm(x)
|
||||
if i != self.num_stages - 1:
|
||||
x = x.reshape([B, H, W, x.shape[2]]).transpose([0, 3, 1, 2])
|
||||
|
||||
return x.mean(axis=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class DWConv(nn.Layer):
|
||||
def __init__(self, dim=768):
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dwconv(x)
|
||||
return x
|
||||
|
||||
|
||||
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
||||
if pretrained is False:
|
||||
pass
|
||||
elif pretrained is True:
|
||||
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
||||
elif isinstance(pretrained, str):
|
||||
load_dygraph_pretrain(model, pretrained)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"pretrained type is not available. Please use `string` or `boolean` type."
|
||||
)
|
||||
|
||||
|
||||
def VAN_tiny(pretrained=False, use_ssld=False, **kwargs):
|
||||
model = VAN(embed_dims=[32, 64, 160, 256],
|
||||
mlp_ratios=[8, 8, 4, 4],
|
||||
norm_layer=partial(
|
||||
nn.LayerNorm, epsilon=1e-6),
|
||||
depths=[3, 3, 5, 2],
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained, model, MODEL_URLS["VAN_tiny"], use_ssld=use_ssld)
|
||||
return model
|
|
@ -34,10 +34,10 @@ Loss:
|
|||
|
||||
# mixed precision training
|
||||
AMP:
|
||||
scale_loss: 128.0
|
||||
use_dynamic_loss_scaling: True
|
||||
# O2: pure fp16
|
||||
level: O2
|
||||
scale_loss: 128.0
|
||||
use_dynamic_loss_scaling: True
|
||||
# O2: pure fp16
|
||||
level: O2
|
||||
|
||||
Optimizer:
|
||||
name: Momentum
|
||||
|
|
|
@ -0,0 +1,158 @@
|
|||
# global configs
|
||||
Global:
|
||||
checkpoints: null
|
||||
pretrained_model: null
|
||||
output_dir: ./output/
|
||||
device: gpu
|
||||
save_interval: 1
|
||||
eval_during_train: True
|
||||
eval_interval: 1
|
||||
epochs: 300
|
||||
print_batch_step: 10
|
||||
use_visualdl: False
|
||||
# used for static mode and model export
|
||||
image_shape: [3, 224, 224]
|
||||
save_inference_dir: ./inference
|
||||
# training model under @to_static
|
||||
to_static: False
|
||||
|
||||
# model architecture
|
||||
Arch:
|
||||
name: VAN_tiny
|
||||
class_num: 1000
|
||||
drop_path_rate: 0.1
|
||||
drop_rate: 0.0
|
||||
|
||||
# loss function config for traing/eval process
|
||||
Loss:
|
||||
Train:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
epsilon: 0.1
|
||||
Eval:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
|
||||
Optimizer:
|
||||
name: AdamW
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
epsilon: 1e-8
|
||||
weight_decay: 0.05
|
||||
one_dim_param_no_weight_decay: True
|
||||
lr:
|
||||
name: Cosine
|
||||
learning_rate: 1e-3
|
||||
eta_min: 1e-6
|
||||
warmup_epoch: 5
|
||||
warmup_start_lr: 1e-6
|
||||
|
||||
# data loader for train and eval
|
||||
DataLoader:
|
||||
Train:
|
||||
dataset:
|
||||
name: ImageNetDataset
|
||||
image_root: ./dataset/ILSVRC2012/
|
||||
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
interpolation: random
|
||||
backend: pil
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- TimmAutoAugment:
|
||||
config_str: rand-m9-mstd0.5-inc1
|
||||
interpolation: random
|
||||
img_size: 224
|
||||
mean: [0.5, 0.5, 0.5]
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.5, 0.5, 0.5]
|
||||
std: [0.5, 0.5, 0.5]
|
||||
order: ''
|
||||
- RandomErasing:
|
||||
EPSILON: 0.25
|
||||
sl: 0.02
|
||||
sh: 1.0/3.0
|
||||
r1: 0.3
|
||||
attempt: 10
|
||||
use_log_aspect: True
|
||||
mode: pixel
|
||||
batch_transform_ops:
|
||||
- OpSampler:
|
||||
MixupOperator:
|
||||
alpha: 0.8
|
||||
prob: 0.5
|
||||
CutmixOperator:
|
||||
alpha: 1.0
|
||||
prob: 0.5
|
||||
sampler:
|
||||
name: DistributedBatchSampler
|
||||
batch_size: 256
|
||||
drop_last: True
|
||||
shuffle: True
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: ImageNetDataset
|
||||
image_root: ./dataset/ILSVRC2012/
|
||||
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 248
|
||||
interpolation: bicubic
|
||||
backend: pil
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.5, 0.5, 0.5]
|
||||
std: [0.5, 0.5, 0.5]
|
||||
order: ''
|
||||
sampler:
|
||||
name: DistributedBatchSampler
|
||||
batch_size: 256
|
||||
drop_last: False
|
||||
shuffle: False
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Infer:
|
||||
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
|
||||
batch_size: 10
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 248
|
||||
interpolation: bicubic
|
||||
backend: pil
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.5, 0.5, 0.5]
|
||||
std: [0.5, 0.5, 0.5]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
PostProcess:
|
||||
name: Topk
|
||||
topk: 5
|
||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
||||
|
||||
Metric:
|
||||
Eval:
|
||||
- TopkAcc:
|
||||
topk: [1, 5]
|
|
@ -38,7 +38,8 @@ class UnifiedResize(object):
|
|||
'bilinear': cv2.INTER_LINEAR,
|
||||
'area': cv2.INTER_AREA,
|
||||
'bicubic': cv2.INTER_CUBIC,
|
||||
'lanczos': cv2.INTER_LANCZOS4
|
||||
'lanczos': cv2.INTER_LANCZOS4,
|
||||
'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
|
||||
}
|
||||
_pil_interp_from_str = {
|
||||
'nearest': Image.NEAREST,
|
||||
|
@ -46,10 +47,18 @@ class UnifiedResize(object):
|
|||
'bicubic': Image.BICUBIC,
|
||||
'box': Image.BOX,
|
||||
'lanczos': Image.LANCZOS,
|
||||
'hamming': Image.HAMMING
|
||||
'hamming': Image.HAMMING,
|
||||
'random': (Image.BILINEAR, Image.BICUBIC)
|
||||
}
|
||||
|
||||
def _cv2_resize(src, size, resample):
|
||||
if isinstance(resample, tuple):
|
||||
resample = random.choice(resample)
|
||||
return cv2.resize(src, size, interpolation=resample)
|
||||
|
||||
def _pil_resize(src, size, resample):
|
||||
if isinstance(resample, tuple):
|
||||
resample = random.choice(resample)
|
||||
pil_img = Image.fromarray(src)
|
||||
pil_img = pil_img.resize(size, resample)
|
||||
return np.asarray(pil_img)
|
||||
|
@ -60,7 +69,7 @@ class UnifiedResize(object):
|
|||
# compatible with opencv < version 4.4.0
|
||||
elif interpolation is None:
|
||||
interpolation = cv2.INTER_LINEAR
|
||||
self.resize_func = partial(cv2.resize, interpolation=interpolation)
|
||||
self.resize_func = partial(_cv2_resize, resample=interpolation)
|
||||
elif backend.lower() == "pil":
|
||||
if isinstance(interpolation, str):
|
||||
interpolation = _pil_interp_from_str[interpolation.lower()]
|
||||
|
|
|
@ -224,7 +224,7 @@ class Engine(object):
|
|||
# build optimizer
|
||||
if self.mode == 'train':
|
||||
self.optimizer, self.lr_sch = build_optimizer(
|
||||
self.config, self.config["Global"]["epochs"],
|
||||
self.config["Optimizer"], self.config["Global"]["epochs"],
|
||||
len(self.train_dataloader),
|
||||
[self.model, self.train_loss_func])
|
||||
|
||||
|
|
|
@ -53,13 +53,20 @@ def classification_eval(engine, epoch_id=0):
|
|||
]
|
||||
time_info["reader_cost"].update(time.time() - tic)
|
||||
batch_size = batch[0].shape[0]
|
||||
batch[0] = paddle.to_tensor(batch[0]).astype("float32")
|
||||
batch[0] = paddle.to_tensor(batch[0])
|
||||
if not engine.config["Global"].get("use_multilabel", False):
|
||||
batch[1] = batch[1].reshape([-1, 1]).astype("int64")
|
||||
|
||||
# image input
|
||||
if engine.amp and engine.config["AMP"].get("use_fp16_test", False):
|
||||
if engine.amp and (
|
||||
engine.config['AMP'].get("level", "O1").upper() == "O2" or
|
||||
engine.config["AMP"].get("use_fp16_test", False)):
|
||||
amp_level = engine.config['AMP'].get("level", "O1").upper()
|
||||
|
||||
if amp_level == "O2":
|
||||
msg = "Only support FP16 evaluation when AMP O2 is enabled."
|
||||
logger.warning(msg)
|
||||
|
||||
with paddle.amp.auto_cast(
|
||||
custom_black_list={
|
||||
"flatten_contiguous_range", "greater_than"
|
||||
|
|
|
@ -162,12 +162,21 @@ def main(args):
|
|||
init_model(global_config, train_prog, exe)
|
||||
|
||||
if 'AMP' in config:
|
||||
if config["AMP"].get("level", "O1").upper() == "O2":
|
||||
use_fp16_test = True
|
||||
msg = "Only support FP16 evaluation when AMP O2 is enabled."
|
||||
logger.warning(msg)
|
||||
elif "use_fp16_test" in config["AMP"]:
|
||||
use_fp16_test = config["AMP"].get["use_fp16_test"]
|
||||
else:
|
||||
use_fp16_test = False
|
||||
|
||||
optimizer.amp_init(
|
||||
device,
|
||||
scope=paddle.static.global_scope(),
|
||||
test_program=eval_prog
|
||||
if global_config["eval_during_train"] else None,
|
||||
use_fp16_test=config["AMP"].get("use_fp16_test", False))
|
||||
use_fp16_test=use_fp16_test)
|
||||
|
||||
if not global_config.get("is_distributed", True):
|
||||
compiled_train_prog = program.compile(
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
===========================train_params===========================
|
||||
model_name:VAN_tiny
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
-o Global.device:gpu
|
||||
-o Global.auto_cast:null
|
||||
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
|
||||
-o Global.output_dir:./output/
|
||||
-o DataLoader.Train.sampler.batch_size:8
|
||||
-o Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./dataset/ILSVRC2012/val
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train
|
||||
norm_train:tools/train.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
|
||||
null:null
|
||||
##
|
||||
===========================infer_params==========================
|
||||
-o Global.save_inference_dir:./inference
|
||||
-o Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/VAN/VAN_tiny.yaml
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
kl_quant:null
|
||||
export2:null
|
||||
inference_dir:null
|
||||
infer_model:../inference/
|
||||
infer_export:True
|
||||
infer_quant:Fasle
|
||||
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=248 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.5,0.5,0.5] -o PreProcess.transform_ops.2.NormalizeImage.std=[0.5,0.5,0.5]
|
||||
-o Global.use_gpu:True|False
|
||||
-o Global.enable_mkldnn:True|False
|
||||
-o Global.cpu_num_threads:1|6
|
||||
-o Global.batch_size:1|16
|
||||
-o Global.use_tensorrt:True|False
|
||||
-o Global.use_fp16:True|False
|
||||
-o Global.inference_model_dir:../inference
|
||||
-o Global.infer_imgs:../dataset/ILSVRC2012/val
|
||||
-o Global.save_log_path:null
|
||||
-o Global.benchmark:True
|
||||
null:null
|
||||
null:null
|
||||
===========================train_benchmark_params==========================
|
||||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
Loading…
Reference in New Issue