multi scale sampler and dataset
parent
9e9a77f31d
commit
f2dde17623
|
@ -0,0 +1,134 @@
|
|||
# global configs
|
||||
Global:
|
||||
checkpoints: null
|
||||
pretrained_model: null
|
||||
output_dir: ./output/
|
||||
device: gpu
|
||||
save_interval: 1
|
||||
eval_during_train: True
|
||||
eval_interval: 1
|
||||
epochs: 120
|
||||
print_batch_step: 10
|
||||
use_visualdl: False
|
||||
# used for static mode and model export
|
||||
image_shape: [3, 224, 224]
|
||||
save_inference_dir: ./inference
|
||||
# training model under @to_static
|
||||
to_static: False
|
||||
use_dali: True
|
||||
|
||||
# model architecture
|
||||
Arch:
|
||||
name: MobileNetV1
|
||||
class_num: 100
|
||||
|
||||
# loss function config for traing/eval process
|
||||
Loss:
|
||||
Train:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
Eval:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
|
||||
|
||||
Optimizer:
|
||||
name: Momentum
|
||||
momentum: 0.9
|
||||
lr:
|
||||
name: Piecewise
|
||||
learning_rate: 0.1
|
||||
decay_epochs: [30, 60, 90]
|
||||
values: [0.1, 0.01, 0.001, 0.0001]
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
coeff: 0.00003
|
||||
|
||||
|
||||
# data loader for train and eval
|
||||
DataLoader:
|
||||
Train:
|
||||
dataset:
|
||||
name: MultiScaleDataset
|
||||
image_root: ./dataset/ILSVRC2012/
|
||||
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
|
||||
sampler:
|
||||
name: MultiScaleSamplerDDP
|
||||
scales: [224, 256]
|
||||
first_bs: 4
|
||||
is_training: True
|
||||
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: ImageNetDataset
|
||||
image_root: ./dataset/ILSVRC2012/
|
||||
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
|
||||
transform_ops:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
sampler:
|
||||
name: DistributedBatchSampler
|
||||
batch_size: 64
|
||||
drop_last: False
|
||||
shuffle: False
|
||||
loader:
|
||||
num_workers: 4
|
||||
use_shared_memory: True
|
||||
|
||||
Infer:
|
||||
infer_imgs: docs/images/whl/demo.jpg
|
||||
batch_size: 10
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
PostProcess:
|
||||
name: Topk
|
||||
topk: 5
|
||||
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
|
||||
|
||||
Metric:
|
||||
Train:
|
||||
- TopkAcc:
|
||||
topk: [1, 5]
|
||||
Eval:
|
||||
- TopkAcc:
|
||||
topk: [1, 5]
|
|
@ -28,11 +28,13 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
|
|||
from ppcls.data.dataloader.logo_dataset import LogoDataset
|
||||
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
|
||||
from ppcls.data.dataloader.mix_dataset import MixDataset
|
||||
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
|
||||
|
||||
# sampler
|
||||
from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRandomIdentitySampler
|
||||
from ppcls.data.dataloader.pk_sampler import PKSampler
|
||||
from ppcls.data.dataloader.mix_sampler import MixSampler
|
||||
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSamplerDDP
|
||||
from ppcls.data import preprocess
|
||||
from ppcls.data.preprocess import transform
|
||||
|
||||
|
|
|
@ -5,5 +5,7 @@ from ppcls.data.dataloader.vehicle_dataset import CompCars, VeriWild
|
|||
from ppcls.data.dataloader.logo_dataset import LogoDataset
|
||||
from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
|
||||
from ppcls.data.dataloader.mix_dataset import MixDataset
|
||||
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
|
||||
from ppcls.data.dataloader.mix_sampler import MixSampler
|
||||
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSamplerDDP
|
||||
from ppcls.data.dataloader.pk_sampler import PKSampler
|
||||
|
|
|
@ -0,0 +1,119 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
from paddle.io import Dataset
|
||||
from paddle.vision import transforms
|
||||
import cv2
|
||||
import warnings
|
||||
|
||||
from ppcls.data import preprocess
|
||||
from ppcls.data.preprocess import transform
|
||||
from ppcls.data.preprocess.ops.operators import DecodeImage
|
||||
from ppcls.utils import logger
|
||||
|
||||
|
||||
def create_operators(params):
|
||||
"""
|
||||
create operators based on the config
|
||||
Args:
|
||||
params(list): a dict list, used to create some operators
|
||||
"""
|
||||
assert isinstance(params, list), ('operator config should be a list')
|
||||
ops = []
|
||||
for operator in params:
|
||||
assert isinstance(operator,
|
||||
dict) and len(operator) == 1, "yaml format error"
|
||||
op_name = list(operator)[0]
|
||||
param = {} if operator[op_name] is None else operator[op_name]
|
||||
op = getattr(preprocess, op_name)(**param)
|
||||
ops.append(op)
|
||||
|
||||
return ops
|
||||
|
||||
|
||||
class MultiScaleDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
image_root,
|
||||
cls_label_path,
|
||||
transform_ops=None, ):
|
||||
self._img_root = image_root
|
||||
self._cls_path = cls_label_path
|
||||
self.transform_ops = transform_ops
|
||||
# if transform_ops:
|
||||
# self._transform_ops = create_operators(transform_ops)
|
||||
|
||||
self.images = []
|
||||
self.labels = []
|
||||
self._load_anno()
|
||||
|
||||
def _load_anno(self, seed=None):
|
||||
assert os.path.exists(self._cls_path)
|
||||
assert os.path.exists(self._img_root)
|
||||
self.images = []
|
||||
self.labels = []
|
||||
|
||||
with open(self._cls_path) as fd:
|
||||
lines = fd.readlines()
|
||||
if seed is not None:
|
||||
np.random.RandomState(seed).shuffle(lines)
|
||||
for l in lines:
|
||||
l = l.strip().split(" ")
|
||||
self.images.append(os.path.join(self._img_root, l[0]))
|
||||
self.labels.append(np.int64(l[1]))
|
||||
assert os.path.exists(self.images[-1])
|
||||
|
||||
|
||||
def __getitem__(self, properties):
|
||||
# properites is a tuple, contains (width, height, index)
|
||||
img_width = properties[0]
|
||||
img_height = properties[1]
|
||||
index = properties[2]
|
||||
has_crop = False
|
||||
if self.transform_ops:
|
||||
for i in range(len(self.transform_ops)):
|
||||
op = self.transform_ops[i]
|
||||
if 'RandCropImage' in op:
|
||||
warnings.warn("Multi scale dataset will crop image according to the multi scale resolution")
|
||||
self.transform_ops[i]['RandCropImage'] = {'size': img_width}
|
||||
has_crop = True
|
||||
if has_crop == False:
|
||||
raise RuntimeError("Multi scale dateset requests RandCropImage")
|
||||
self._transform_ops = create_operators(self.transform_ops)
|
||||
|
||||
try:
|
||||
with open(self.images[index], 'rb') as f:
|
||||
img = f.read()
|
||||
if self._transform_ops:
|
||||
img = transform(img, self._transform_ops)
|
||||
img = img.transpose((2, 0, 1))
|
||||
return (img, self.labels[index])
|
||||
|
||||
except Exception as ex:
|
||||
logger.error("Exception occured when parse line: {} with msg: {}".
|
||||
format(self.images[index], ex))
|
||||
rnd_idx = np.random.randint(self.__len__())
|
||||
return self.__getitem__(rnd_idx)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
||||
@property
|
||||
def class_num(self):
|
||||
return len(set(self.labels))
|
|
@ -0,0 +1,105 @@
|
|||
from paddle.io import Sampler
|
||||
import paddle.distributed as dist
|
||||
|
||||
import math
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
from ppcls import data
|
||||
|
||||
class MultiScaleSamplerDDP(Sampler):
|
||||
def __init__(self, data_source, scales, first_bs, g):
|
||||
print(scales)
|
||||
# min. and max. spatial dimensions
|
||||
self.data_source = data_source
|
||||
self.n_data_samples = len(self.data_source)
|
||||
|
||||
if isinstance(scales[0], tuple):
|
||||
width_dims = [i[0] for i in scales]
|
||||
height_dims = [i[1] for i in scales]
|
||||
elif isinstance(scales[0], int):
|
||||
width_dims = scales
|
||||
height_dims = scales
|
||||
base_im_w = width_dims[0]
|
||||
base_im_h = height_dims[0]
|
||||
base_batch_size = first_bs
|
||||
|
||||
# Get the GPU and node related information
|
||||
num_replicas =dist.get_world_size()
|
||||
rank = dist.get_rank()
|
||||
# adjust the total samples to avoid batch dropping
|
||||
num_samples_per_replica = int(math.ceil(self.n_data_samples * 1.0 / num_replicas))
|
||||
img_indices = [idx for idx in range(self.n_data_samples)]
|
||||
|
||||
self.shuffle = False
|
||||
if is_training:
|
||||
# compute the spatial dimensions and corresponding batch size
|
||||
# ImageNet models down-sample images by a factor of 32.
|
||||
# Ensure that width and height dimensions are multiples are multiple of 32.
|
||||
width_dims = [int((w // 32) * 32) for w in width_dims]
|
||||
height_dims = [int((h // 32) * 32) for h in height_dims]
|
||||
|
||||
img_batch_pairs = list()
|
||||
base_elements = base_im_w * base_im_h * base_batch_size
|
||||
for (h, w) in zip(height_dims, width_dims):
|
||||
batch_size = int(max(1, (base_elements / (h * w))))
|
||||
img_batch_pairs.append((h, w, batch_size))
|
||||
self.img_batch_pairs = img_batch_pairs
|
||||
self.shuffle = True
|
||||
else:
|
||||
self.img_batch_pairs = [(base_im_h , base_im_w , base_batch_size)]
|
||||
|
||||
self.img_indices = img_indices
|
||||
self.n_samples_per_replica = num_samples_per_replica
|
||||
self.epoch = 0
|
||||
self.rank = rank
|
||||
self.num_replicas = num_replicas
|
||||
|
||||
self.batch_list = []
|
||||
self.current = 0
|
||||
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||||
while self.current < self.n_samples_per_replica:
|
||||
curr_h, curr_w, curr_bsz = random.choice(self.img_batch_pairs)
|
||||
|
||||
end_index = min(self.current + curr_bsz, self.n_samples_per_replica)
|
||||
|
||||
batch_ids = indices_rank_i[self.current:end_index]
|
||||
n_batch_samples = len(batch_ids)
|
||||
if n_batch_samples != curr_bsz:
|
||||
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
|
||||
self.current += curr_bsz
|
||||
|
||||
if len(batch_ids) > 0:
|
||||
batch = [curr_h, curr_w, len(batch_ids)]
|
||||
self.batch_list.append(batch)
|
||||
self.length = len(self.batch_list)
|
||||
|
||||
def __iter__(self):
|
||||
if self.shuffle:
|
||||
random.seed(self.epoch)
|
||||
random.shuffle(self.img_indices)
|
||||
random.shuffle(self.img_batch_pairs)
|
||||
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||||
else:
|
||||
indices_rank_i = self.img_indices[self.rank : len(self.img_indices) : self.num_replicas]
|
||||
|
||||
start_index = 0
|
||||
for batch_tuple in self.batch_list:
|
||||
curr_h, curr_w, curr_bsz = batch_tuple
|
||||
end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
|
||||
batch_ids = indices_rank_i[start_index:end_index]
|
||||
n_batch_samples = len(batch_ids)
|
||||
if n_batch_samples != curr_bsz:
|
||||
batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
|
||||
start_index += curr_bsz
|
||||
|
||||
if len(batch_ids) > 0:
|
||||
batch = [(curr_h, curr_w, b_id) for b_id in batch_ids]
|
||||
yield batch
|
||||
|
||||
def set_epoch(self, epoch: int):
|
||||
self.epoch = epoch
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
Loading…
Reference in New Issue