Support training without amp
parent
4553d22cf1
commit
f313a6d873
|
@ -98,7 +98,6 @@ def train_epoch_metabin(engine, epoch_id, print_batch_step):
|
|||
for key, value in mtest_loss_dict.items()}
|
||||
}
|
||||
# step lr (by iter)
|
||||
# the last lr_sch is cyclic_lr
|
||||
for i in range(len(engine.lr_sch)):
|
||||
if not getattr(engine.lr_sch[i], "by_epoch", False):
|
||||
engine.lr_sch[i].step()
|
||||
|
@ -117,7 +116,6 @@ def train_epoch_metabin(engine, epoch_id, print_batch_step):
|
|||
tic = time.time()
|
||||
|
||||
# step lr(by epoch)
|
||||
# the last lr_sch is cyclic_lr
|
||||
for i in range(len(engine.lr_sch)):
|
||||
if getattr(engine.lr_sch[i], "by_epoch", False) and \
|
||||
type_name(engine.lr_sch[i]) != "ReduceOnPlateau":
|
||||
|
@ -191,10 +189,16 @@ def get_meta_data(meta_dataloader_iter, num_domain):
|
|||
def forward(engine, batch, loss_func):
|
||||
batch_info = defaultdict()
|
||||
batch_info = {"label": batch[1], "domain": batch[2]}
|
||||
amp_level = engine.config["AMP"].get("level", "O1").upper()
|
||||
with paddle.amp.auto_cast(
|
||||
custom_black_list={"flatten_contiguous_range", "greater_than"},
|
||||
level=amp_level):
|
||||
if engine.amp:
|
||||
amp_level = engine.config["AMP"].get("level", "O1").upper()
|
||||
with paddle.amp.auto_cast(
|
||||
custom_black_list={
|
||||
"flatten_contiguous_range", "greater_than"
|
||||
},
|
||||
level=amp_level):
|
||||
out = engine.model(batch[0], batch[1])
|
||||
loss_dict = loss_func(out, batch_info)
|
||||
else:
|
||||
out = engine.model(batch[0], batch[1])
|
||||
loss_dict = loss_func(out, batch_info)
|
||||
return out, loss_dict
|
||||
|
@ -202,9 +206,13 @@ def forward(engine, batch, loss_func):
|
|||
|
||||
def backward(engine, loss, optimizer):
|
||||
optimizer.clear_grad()
|
||||
scaled = engine.scaler.scale(loss)
|
||||
scaled.backward()
|
||||
engine.scaler.minimize(optimizer, scaled)
|
||||
if engine.amp:
|
||||
scaled = engine.scaler.scale(loss)
|
||||
scaled.backward()
|
||||
engine.scaler.minimize(optimizer, scaled)
|
||||
else:
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
for name, layer in engine.model.backbone.named_sublayers():
|
||||
if "gate" == name.split('.')[-1]:
|
||||
layer.clip_gate()
|
||||
|
|
Loading…
Reference in New Issue