docs: update

pull/1987/head
gaotingquan 2022-06-07 11:49:27 +00:00
parent 4fe5cd6500
commit f3a7cd42a7
No known key found for this signature in database
GPG Key ID: F3EF7F42536A30B7
2 changed files with 5 additions and 5 deletions

View File

@ -212,14 +212,14 @@ You can save the prediction result(s) as pre-label, only need to use `pre_label_
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/inference_deployment/whl_' # it can be infer_imgs folder path which contains all of images you want to predict.
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_' --save_dir='./output_pre_label/'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
```
<a name="4.8"></a>

View File

@ -212,14 +212,14 @@ print(next(result))
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', save_dir='./output_pre_label/')
infer_imgs = 'docs/images/whl/' # it can be infer_imgs folder path which contains all of images you want to predict.
infer_imgs = 'docs/images/' # it can be infer_imgs folder path which contains all of images you want to predict.
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/whl/' --save_dir='./output_pre_label/'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/' --save_dir='./output_pre_label/'
```
<a name="4.8"></a>