Merge pull request #985 from RainFrost1/develop

update vehicle fine-graned classfication
pull/992/head
cuicheng01 2021-06-30 10:10:11 +08:00 committed by GitHub
commit f8a8c51e9f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 39 additions and 20 deletions

View File

@ -17,3 +17,14 @@ The overall structure of feature learning is shown in the figure above, which ma
## 2 Config Description
The feature learning config file description can be found in [yaml description](../tutorials/config_en.md).
## 3 Pretrained Model
The following are the pretrained models trained on different dataset.
- Vehicle Fine-Grained Classification[CompCars](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/vehicle_cls_ResNet50_CompCars_v1.1_pretrained.pdparams)
- Vehicle ReID[VERI-Wild](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/vehicle_reid_ResNet50_VERIWild_v1.0_pretrained.pdparams)
- Cartoon Character Recognition[iCartoon](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/cartoon_rec_ResNet50_iCartoon_v1.0_pretrained.pdparams)
- Logo Recognition[Logo 3K](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/logo_rec_ResNet50_Logo3K_v1.0_pretrained.pdparams)
- Product Recognition [Inshop](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/product_ResNet50_vd_Inshop_pretrained_v1.0.pdparams)、[Aliproduct](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/product_ResNet50_vd_Aliproduct_v1.0_pretrained.pdparams)

View File

@ -40,8 +40,7 @@ In order to reduce the complexity of calculating feature distance in inference,
### 1.4 Metric Learning Losses
- In vehicle ReID[SupConLoss](../../../ppcls/loss/supconloss.py) , [ArcLoss](../../../ppcls/arch/gears/arcmargin.py) are used. The weight ratio of two losses is 1:1.
- In vehicle fine-grained classification, [TtripLet Loss](../../../ppcls/loss/triplet.py), [ArcLoss](../../../ppcls/arch/gears/arcmargin.py) are used. The weight ratio of two losses is 1:1.
In vehicle ReID and vehicle fine-grained classification[SupConLoss](../../../ppcls/loss/supconloss.py) , [ArcLoss](../../../ppcls/arch/gears/arcmargin.py) are used. The weight ratio of two losses is 1:1.
## 2 Experiment
@ -74,13 +73,13 @@ The images in the dataset mainly come from the network and monitoring data. The
It is worth noting that this dataset needs to generate labels according to its own needs. For example, in this demo, vehicles of the same model produced in different years are regarded as the same category. Therefore, the total number of categories is 431.
| **Methods** | Top1 Acc |
| :-----------------------------: | :-------: |
| ResNet101-swp[6] | 97.6% |
| Fine-Tuning DARTS[7] | 95.9% |
| Resnet50 + COOC[8] | 95.6% |
| A3M[9] | 95.4% |
| PaddleClas baseline (ResNet50) | **97.1**% |
| **Methods** | Top1 Acc |
| :-----------------------------: | :--------: |
| ResNet101-swp[6] | 97.6% |
| Fine-Tuning DARTS[7] | 95.9% |
| Resnet50 + COOC[8] | 95.6% |
| A3M[9] | 95.4% |
| PaddleClas baseline (ResNet50) | **97.36**% |
## 3 References

View File

@ -17,3 +17,13 @@
## 2 配置文件说明
配置文件说明详见[yaml配置文件说明文档](../tutorials/config.md)。其中模型结构配置,详见文档中**识别模型结构配置**部分。
## 3 预训练模型
以下为各应用在不同数据集下的预训练模型
- 车辆细分类:[CompCars](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/vehicle_cls_ResNet50_CompCars_v1.1_pretrained.pdparams)
- 车辆ReID[VERI-Wild](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/vehicle_reid_ResNet50_VERIWild_v1.0_pretrained.pdparams)
- 动漫人物识别:[iCartoon](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/cartoon_rec_ResNet50_iCartoon_v1.0_pretrained.pdparams)
- Logo识别[Logo3K](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/logo_rec_ResNet50_Logo3K_v1.0_pretrained.pdparams)
- 商品识别: [Inshop](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/product_ResNet50_vd_Inshop_pretrained_v1.0.pdparams)、[Aliproduct](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/product_ResNet50_vd_Aliproduct_v1.0_pretrained.pdparams)

View File

@ -39,8 +39,7 @@ ReID也就是 Re-identification其定义是利用算法在图像库中
### 1.4 Metric Learning相关Loss的设置
- 车辆ReID中使用了[SupConLoss](../../../ppcls/loss/supconloss.py) + [ArcLoss](../../../ppcls/arch/gears/arcmargin.py)其中权重比例为1:1
- 车辆细分类,使用[TtripLet Loss](../../../ppcls/loss/triplet.py) + [ArcLoss](../../../ppcls/arch/gears/arcmargin.py)其中权重比例为1:1
车辆ReID及细粒度分类中使用了[SupConLoss](../../../ppcls/loss/supconloss.py) + [ArcLoss](../../../ppcls/arch/gears/arcmargin.py)其中权重比例为1:1
## 2 实验结果
@ -72,13 +71,13 @@ ReID也就是 Re-identification其定义是利用算法在图像库中
数据集中图像主要来自网络和监控数据其中网络数据包含163个汽车制造商、1716个汽车型号的汽车。共**136,726**张全车图像,**27,618**张部分车图像。其中网络汽车数据包含bounding box、视角、5个属性最大速度、排量、车门数、车座数、汽车类型。监控数据包含**50,000**张前视角图像。
值得注意的是此数据集中需要根据自己的需要生成不同的label如本demo中将不同年份生产的相同型号的车辆视为同一类因此类别总数为431类。
| **Methods** | Top1 Acc |
| :-----------------------------: | :-------: |
| ResNet101-swp[6] | 97.6% |
| Fine-Tuning DARTS[7] | 95.9% |
| Resnet50 + COOC[8] | 95.6% |
| A3M[9] | 95.4% |
| PaddleClas baseline (ResNet50) | **97.1**% |
| **Methods** | Top1 Acc |
| :-----------------------------: | :--------: |
| ResNet101-swp[6] | 97.6% |
| Fine-Tuning DARTS[7] | 95.9% |
| Resnet50 + COOC[8] | 95.6% |
| A3M[9] | 95.4% |
| PaddleClas baseline (ResNet50) | **97.37**% |
## 3 参考文献

View File

@ -40,9 +40,9 @@ Loss:
Train:
- CELoss:
weight: 1.0
- TripletLossV2:
- SupConLoss:
weight: 1.0
margin: 0.5
views: 2
Eval:
- CELoss:
weight: 1.0