parent
c9f8e8c6e7
commit
f921b9bd5b
docs
images/feature_maps
zh_CN/feature_visiualization
Binary file not shown.
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 24 KiB |
Binary file not shown.
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 95 KiB |
|
@ -55,16 +55,30 @@ python tools/feature_maps_visualization/fm_vis.py -i the image you want to test
|
|||
+ `-i`:待预测的图片文件路径,如 `./test.jpeg`
|
||||
+ `-c`:特征图维度,如 `./resnet50_vd/model`
|
||||
+ `-p`:权重文件路径,如 `./ResNet50_pretrained/`
|
||||
+ `--show`:是否展示图片,默认值 False
|
||||
+ `--interpolation`: 图像插值方式, 默认值 1
|
||||
+ `--save_path`:保存路径,如:`./tools/`
|
||||
+ `--use_gpu`:是否使用 GPU 预测,默认值:True
|
||||
|
||||
## 四、结果
|
||||
输入图片:
|
||||
|
||||

|
||||
* 输入图片:
|
||||
|
||||
输出特征图:
|
||||

|
||||
|
||||

|
||||
* 运行下面的特征图可视化脚本
|
||||
|
||||
```
|
||||
python tools/feature_maps_visualization/fm_vis.py \
|
||||
-i ./docs/images/feature_maps/feature_visualization_input.jpg \
|
||||
-c 5 \
|
||||
-p pretrained/ResNet50_pretrained/ \
|
||||
--show=True \
|
||||
--interpolation=1 \
|
||||
--save_path="./output.png" \
|
||||
--use_gpu=False \
|
||||
--load_static_weights=True
|
||||
```
|
||||
|
||||
* 输出特征图保存为`output.png`,如下所示。
|
||||
|
||||

|
||||
|
|
|
@ -11,84 +11,92 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from resnet import ResNet50
|
||||
import paddle.fluid as fluid
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2
|
||||
import utils
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||||
|
||||
import paddle
|
||||
from paddle.distributed import ParallelEnv
|
||||
|
||||
from resnet import ResNet50
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
|
||||
|
||||
def parse_args():
|
||||
def str2bool(v):
|
||||
return v.lower() in ("true", "t", "1")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-i", "--image_file", type=str)
|
||||
parser.add_argument("-c", "--channel_num", type=int)
|
||||
parser.add_argument("-p", "--pretrained_model", type=str)
|
||||
parser.add_argument("--show", type=str2bool, default=False)
|
||||
parser.add_argument("--interpolation", type=int, default=1)
|
||||
parser.add_argument("--save_path", type=str)
|
||||
parser.add_argument("--save_path", type=str, default=None)
|
||||
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
||||
|
||||
parser.add_argument(
|
||||
"--load_static_weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help='Whether to load the pretrained weights saved in static mode')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def create_operators(interpolation=1):
|
||||
size = 224
|
||||
img_mean = [0.485, 0.456, 0.406]
|
||||
img_std = [0.229, 0.224, 0.225]
|
||||
img_scale = 1.0 / 255.0
|
||||
|
||||
decode_op = utils.DecodeImage()
|
||||
resize_op = utils.ResizeImage(resize_short=256, interpolation=interpolation)
|
||||
resize_op = utils.ResizeImage(
|
||||
resize_short=256, interpolation=interpolation)
|
||||
crop_op = utils.CropImage(size=(size, size))
|
||||
normalize_op = utils.NormalizeImage(
|
||||
scale=img_scale, mean=img_mean, std=img_std)
|
||||
totensor_op = utils.ToTensor()
|
||||
|
||||
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
|
||||
return [resize_op, crop_op, normalize_op, totensor_op]
|
||||
|
||||
|
||||
def preprocess(fname, ops):
|
||||
data = open(fname, 'rb').read()
|
||||
def preprocess(data, ops):
|
||||
for op in ops:
|
||||
data = op(data)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
operators = create_operators(args.interpolation)
|
||||
# assign the place
|
||||
if args.use_gpu:
|
||||
gpu_id = fluid.dygraph.parallel.Env().dev_id
|
||||
place = fluid.CUDAPlace(gpu_id)
|
||||
else:
|
||||
place = fluid.CPUPlace()
|
||||
place = 'gpu:{}'.format(ParallelEnv().dev_id) if args.use_gpu else 'cpu'
|
||||
place = paddle.set_device(place)
|
||||
|
||||
net = ResNet50()
|
||||
load_dygraph_pretrain(net, args.pretrained_model, args.load_static_weights)
|
||||
|
||||
img = cv2.imread(args.image_file, cv2.IMREAD_COLOR)
|
||||
data = preprocess(img, operators)
|
||||
data = np.expand_dims(data, axis=0)
|
||||
data = paddle.to_tensor(data)
|
||||
net.eval()
|
||||
_, fm = net(data)
|
||||
assert args.channel_num >= 0 and args.channel_num <= fm.shape[
|
||||
1], "the channel is out of the range, should be in {} but got {}".format(
|
||||
[0, fm.shape[1]], args.channel_num)
|
||||
|
||||
fm = (np.squeeze(fm[0][args.channel_num].numpy()) * 255).astype(np.uint8)
|
||||
fm = cv2.resize(fm, (img.shape[1], img.shape[0]))
|
||||
if args.save_path is not None:
|
||||
print("the feature map is saved in path: {}".format(args.save_path))
|
||||
cv2.imwrite(args.save_path, fm)
|
||||
|
||||
|
||||
#pre_weights_dict = fluid.load_program_state(args.pretrained_model)
|
||||
with fluid.dygraph.guard(place):
|
||||
net = ResNet50()
|
||||
data = preprocess(args.image_file, operators)
|
||||
data = np.expand_dims(data, axis=0)
|
||||
data = fluid.dygraph.to_variable(data)
|
||||
dy_weights_dict = net.state_dict()
|
||||
pre_weights_dict_new = {}
|
||||
for key in dy_weights_dict:
|
||||
weights_name = dy_weights_dict[key].name
|
||||
pre_weights_dict_new[key] = pre_weights_dict[weights_name]
|
||||
net.set_dict(pre_weights_dict_new)
|
||||
net.eval()
|
||||
_, fm = net(data)
|
||||
assert args.channel_num >= 0 and args.channel_num <= fm.shape[1], "the channel is out of the range, should be in {} but got {}".format([0, fm.shape[1]], args.channel_num)
|
||||
fm = (np.squeeze(fm[0][args.channel_num].numpy())*255).astype(np.uint8)
|
||||
if fm is not None:
|
||||
if args.save:
|
||||
cv2.imwrite(args.save_path, fm)
|
||||
if args.show:
|
||||
cv2.show(fm)
|
||||
cv2.waitKey(0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
@ -1,20 +1,36 @@
|
|||
import numpy as np
|
||||
import argparse
|
||||
import ast
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.fluid import framework
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
import math
|
||||
import sys
|
||||
import time
|
||||
|
||||
class ConvBNLayer(fluid.dygraph.Layer):
|
||||
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
|
@ -26,25 +42,25 @@ class ConvBNLayer(fluid.dygraph.Layer):
|
|||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
in_channels=num_channels,
|
||||
out_channels=num_filters,
|
||||
kernel_size=filter_size,
|
||||
stride=stride,
|
||||
padding=(filter_size - 1) // 2,
|
||||
groups=groups,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name=name + "_weights"),
|
||||
weight_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
if name == "conv1":
|
||||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self._batch_norm = BatchNorm(num_filters,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||
moving_mean_name=bn_name + '_mean',
|
||||
moving_variance_name=bn_name + '_variance')
|
||||
self._batch_norm = BatchNorm(
|
||||
num_filters,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||||
bias_attr=ParamAttr(bn_name + "_offset"),
|
||||
moving_mean_name=bn_name + "_mean",
|
||||
moving_variance_name=bn_name + "_variance")
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self._conv(inputs)
|
||||
|
@ -52,7 +68,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
|
|||
return y
|
||||
|
||||
|
||||
class BottleneckBlock(fluid.dygraph.Layer):
|
||||
class BottleneckBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
|
@ -65,21 +81,21 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=1,
|
||||
act='relu',
|
||||
name=name+"_branch2a")
|
||||
act="relu",
|
||||
name=name + "_branch2a")
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
num_filters=num_filters,
|
||||
filter_size=3,
|
||||
stride=stride,
|
||||
act='relu',
|
||||
name=name+"_branch2b")
|
||||
act="relu",
|
||||
name=name + "_branch2b")
|
||||
self.conv2 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
num_filters=num_filters * 4,
|
||||
filter_size=1,
|
||||
act=None,
|
||||
name=name+"_branch2c")
|
||||
name=name + "_branch2c")
|
||||
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
|
@ -103,90 +119,163 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = paddle.add(x=short, y=conv2)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
class ResNet(fluid.dygraph.Layer):
|
||||
class BasicBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
stride,
|
||||
shortcut=True,
|
||||
name=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.stride = stride
|
||||
self.conv0 = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=3,
|
||||
stride=stride,
|
||||
act="relu",
|
||||
name=name + "_branch2a")
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
num_filters=num_filters,
|
||||
filter_size=3,
|
||||
act=None,
|
||||
name=name + "_branch2b")
|
||||
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=1,
|
||||
stride=stride,
|
||||
name=name + "_branch1")
|
||||
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
conv1 = self.conv1(y)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.add(x=short, y=conv1)
|
||||
y = F.relu(y)
|
||||
return y
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, layers=50, class_dim=1000):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [50, 101, 152]
|
||||
supported_layers = [18, 34, 50, 101, 152]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
||||
self.fm = None
|
||||
"supported layers are {} but input layer is {}".format(
|
||||
supported_layers, layers)
|
||||
|
||||
if layers == 50:
|
||||
if layers == 18:
|
||||
depth = [2, 2, 2, 2]
|
||||
elif layers == 34 or layers == 50:
|
||||
depth = [3, 4, 6, 3]
|
||||
elif layers == 101:
|
||||
depth = [3, 4, 23, 3]
|
||||
elif layers == 152:
|
||||
depth = [3, 8, 36, 3]
|
||||
num_channels = [64, 256, 512, 1024]
|
||||
num_channels = [64, 256, 512,
|
||||
1024] if layers >= 50 else [64, 64, 128, 256]
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
self.feature_map = None
|
||||
|
||||
self.conv = ConvBNLayer(
|
||||
num_channels=3,
|
||||
num_filters=64,
|
||||
filter_size=7,
|
||||
stride=2,
|
||||
act='relu',
|
||||
act="relu",
|
||||
name="conv1")
|
||||
self.pool2d_max = Pool2D(
|
||||
pool_size=3,
|
||||
pool_stride=2,
|
||||
pool_padding=1,
|
||||
pool_type='max')
|
||||
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.bottleneck_block_list = []
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
if layers in [101, 152] and block == 2:
|
||||
if i == 0:
|
||||
conv_name="res"+str(block+2)+"a"
|
||||
self.block_list = []
|
||||
if layers >= 50:
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
if layers in [101, 152] and block == 2:
|
||||
if i == 0:
|
||||
conv_name = "res" + str(block + 2) + "a"
|
||||
else:
|
||||
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||||
else:
|
||||
conv_name="res"+str(block+2)+"b"+str(i)
|
||||
else:
|
||||
conv_name="res"+str(block+2)+chr(97+i)
|
||||
bottleneck_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BottleneckBlock(
|
||||
num_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block] * 4,
|
||||
num_filters=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
name=conv_name))
|
||||
self.bottleneck_block_list.append(bottleneck_block)
|
||||
shortcut = True
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
bottleneck_block = self.add_sublayer(
|
||||
conv_name,
|
||||
BottleneckBlock(
|
||||
num_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block] * 4,
|
||||
num_filters=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
name=conv_name))
|
||||
self.block_list.append(bottleneck_block)
|
||||
shortcut = True
|
||||
else:
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
basic_block = self.add_sublayer(
|
||||
conv_name,
|
||||
BasicBlock(
|
||||
num_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block],
|
||||
num_filters=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
name=conv_name))
|
||||
self.block_list.append(basic_block)
|
||||
shortcut = True
|
||||
|
||||
self.pool2d_avg = Pool2D(
|
||||
pool_size=7, pool_type='avg', global_pooling=True)
|
||||
self.pool2d_avg = AdaptiveAvgPool2D(1)
|
||||
|
||||
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1
|
||||
self.pool2d_avg_channels = num_channels[-1] * 2
|
||||
|
||||
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
||||
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
|
||||
|
||||
self.out = Linear(self.pool2d_avg_output,
|
||||
class_dim,
|
||||
param_attr=ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc_0.w_0"),
|
||||
bias_attr=ParamAttr(name="fc_0.b_0"))
|
||||
self.out = Linear(
|
||||
self.pool2d_avg_channels,
|
||||
class_dim,
|
||||
weight_attr=ParamAttr(
|
||||
initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
|
||||
bias_attr=ParamAttr(name="fc_0.b_0"))
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv(inputs)
|
||||
y = self.pool2d_max(y)
|
||||
self.fm = y
|
||||
for bottleneck_block in self.bottleneck_block_list:
|
||||
y = bottleneck_block(y)
|
||||
self.feature_map = y
|
||||
for block in self.block_list:
|
||||
y = block(y)
|
||||
y = self.pool2d_avg(y)
|
||||
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
|
||||
y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
|
||||
y = self.out(y)
|
||||
return y, self.fm
|
||||
return y, self.feature_map
|
||||
|
||||
|
||||
def ResNet18(**args):
|
||||
model = ResNet(layers=18, **args)
|
||||
return model
|
||||
|
||||
|
||||
def ResNet34(**args):
|
||||
model = ResNet(layers=34, **args)
|
||||
return model
|
||||
|
||||
|
||||
def ResNet50(**args):
|
||||
|
@ -202,14 +291,3 @@ def ResNet101(**args):
|
|||
def ResNet152(**args):
|
||||
model = ResNet(layers=152, **args)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
place = fluid.CPUPlace()
|
||||
with fluid.dygraph.guard(place):
|
||||
model = ResNet50()
|
||||
img = np.random.uniform(0, 255, [1, 3, 224, 224]).astype('float32')
|
||||
img = fluid.dygraph.to_variable(img)
|
||||
res = model(img)
|
||||
print(res.shape)
|
||||
|
|
Loading…
Reference in New Issue