fix lite_shitu bugs
parent
3a28ee2900
commit
fa87707d2f
|
@ -92,9 +92,9 @@ PaddleClas 提供了转换并优化后的推理模型,可以直接参考下方
|
|||
```shell
|
||||
# 进入lite_ppshitu目录
|
||||
cd $PaddleClas/deploy/lite_shitu
|
||||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.1.tar
|
||||
tar -xf ppshitu_lite_models_v1.1.tar
|
||||
rm -f ppshitu_lite_models_v1.1.tar
|
||||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.2.tar
|
||||
tar -xf ppshitu_lite_models_v1.2.tar
|
||||
rm -f ppshitu_lite_models_v1.2.tar
|
||||
```
|
||||
|
||||
#### 2.1.2 使用其他模型
|
||||
|
@ -162,7 +162,7 @@ git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
|||
# 进入PaddleDetection根目录
|
||||
cd PaddleDetection
|
||||
# 将预训练模型导出为inference模型
|
||||
python tools/export_model.py -c configs/picodet/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml -o weights=https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams --output_dir=inference
|
||||
python tools/export_model.py -c configs/picodet/application/mainbody_detection/picodet_lcnet_x2_5_640_mainbody.yml -o weights=https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams export_post_process=False --output_dir=inference
|
||||
# 将inference模型转化为Paddle-Lite优化模型
|
||||
paddle_lite_opt --model_file=inference/picodet_lcnet_x2_5_640_mainbody/model.pdmodel --param_file=inference/picodet_lcnet_x2_5_640_mainbody/model.pdiparams --optimize_out=inference/picodet_lcnet_x2_5_640_mainbody/mainbody_det
|
||||
# 将转好的模型复制到lite_shitu目录下
|
||||
|
@ -183,24 +183,56 @@ cd deploy/lite_shitu
|
|||
|
||||
**注意**:`--optimize_out` 参数为优化后模型的保存路径,无需加后缀`.nb`;`--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
|
||||
|
||||
### 2.2 将yaml文件转换成json文件
|
||||
|
||||
```shell
|
||||
# 如果测试单张图像
|
||||
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb --rec_model_path ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1_infer.nb --img_path images/demo.jpg
|
||||
# or
|
||||
# 如果测试多张图像
|
||||
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb --rec_model_path ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1_infer.nb --img_dir images
|
||||
# 执行完成后,会在lit_shitu下生成shitu_config.json配置文件
|
||||
```
|
||||
|
||||
### 2.3 index字典转换
|
||||
由于python的检索库字典,使用`pickle`进行的序列化存储,导致C++不方便读取,因此需要进行转换
|
||||
### 2.2 生成新的检索库
|
||||
|
||||
由于lite 版本的检索库用的是`faiss1.5.3`版本,与新版本不兼容,因此需要重新生成index库
|
||||
|
||||
#### 2.2.1 数据及环境配置
|
||||
|
||||
```shell
|
||||
# 进入上级目录
|
||||
cd ..
|
||||
# 下载瓶装饮料数据集
|
||||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar
|
||||
rm -rf drink_dataset_v1.0.tar
|
||||
rm -rf drink_dataset_v1.0/index
|
||||
|
||||
# 安装1.5.3版本的faiss
|
||||
pip install faiss-cpu==1.5.3
|
||||
|
||||
# 下载通用识别模型,可替换成自己的inference model
|
||||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
|
||||
tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar
|
||||
rm -rf general_PPLCNet_x2_5_lite_v1.0_infer.tar
|
||||
```
|
||||
|
||||
#### 2.2.2 生成新的index文件
|
||||
|
||||
```shell
|
||||
# 生成新的index库,注意指定好识别模型的路径,同时将index_mothod修改成Flat,HNSW32和IVF在此版本中可能存在bug,请慎重使用。
|
||||
# 如果使用自己的识别模型,对应的修改inference model的目录
|
||||
python python/build_gallery.py -c configs/inference_drink.yaml -o Global.rec_inference_model_dir=general_PPLCNet_x2_5_lite_v1.0_infer -o IndexProcess.index_method=Flat
|
||||
|
||||
# 进入到lite_shitu目录
|
||||
cd lite_shitu
|
||||
mv ../drink_dataset_v1.0 .
|
||||
```
|
||||
|
||||
### 2.3 将yaml文件转换成json文件
|
||||
|
||||
```shell
|
||||
# 如果测试单张图像
|
||||
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.2/mainbody_PPLCNet_x2_5_640_v1.2_lite.nb --rec_model_path ppshitu_lite_models_v1.2/general_PPLCNet_x2_5_lite_v1.2_infer.nb --img_path images/demo.jpeg
|
||||
# or
|
||||
# 如果测试多张图像
|
||||
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.2/mainbody_PPLCNet_x2_5_640_v1.2_lite.nb --rec_model_path ppshitu_lite_models_v1.2/general_PPLCNet_x2_5_lite_v1.2_infer.nb --img_dir images
|
||||
# 执行完成后,会在lit_shitu下生成shitu_config.json配置文件
|
||||
```
|
||||
|
||||
### 2.4 index字典转换
|
||||
由于python的检索库字典,使用`pickle`进行的序列化存储,导致C++不方便读取,因此需要进行转换
|
||||
|
||||
```shell
|
||||
|
||||
# 转化id_map.pkl为id_map.txt
|
||||
python transform_id_map.py -c ../configs/inference_drink.yaml
|
||||
|
@ -208,7 +240,7 @@ python transform_id_map.py -c ../configs/inference_drink.yaml
|
|||
转换成功后,会在`IndexProcess.index_dir`目录下生成`id_map.txt`。
|
||||
|
||||
|
||||
### 2.4 与手机联调
|
||||
### 2.5 与手机联调
|
||||
|
||||
首先需要进行一些准备工作。
|
||||
1. 准备一台arm8的安卓手机,如果编译的预测库是armv7,则需要arm7的手机,并修改Makefile中`ARM_ABI=arm7`。
|
||||
|
@ -308,8 +340,9 @@ chmod 777 pp_shitu
|
|||
|
||||
运行效果如下:
|
||||
```
|
||||
images/demo.jpg:
|
||||
result0: bbox[253, 275, 1146, 872], score: 0.974196, label: 伊藤园_果蔬汁
|
||||
images/demo.jpeg:
|
||||
result0: bbox[344, 98, 527, 593], score: 0.811656, label: 红牛-强化型
|
||||
result1: bbox[0, 0, 600, 600], score: 0.729664, label: 红牛-强化型
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 346 KiB |
Binary file not shown.
Before Width: | Height: | Size: 445 KiB |
|
@ -24,6 +24,7 @@
|
|||
#include <stdlib.h>
|
||||
#include <sys/time.h>
|
||||
#include <vector>
|
||||
#include <include/preprocess_op.h>
|
||||
|
||||
using namespace paddle::lite_api; // NOLINT
|
||||
using namespace std;
|
||||
|
@ -48,10 +49,6 @@ public:
|
|||
config_file["Global"]["rec_model_path"].as<std::string>());
|
||||
this->predictor = CreatePaddlePredictor<MobileConfig>(config);
|
||||
|
||||
if (config_file["Global"]["rec_label_path"].as<std::string>().empty()) {
|
||||
std::cout << "Please set [rec_label_path] in config file" << std::endl;
|
||||
exit(-1);
|
||||
}
|
||||
SetPreProcessParam(config_file["RecPreProcess"]["transform_ops"]);
|
||||
printf("feature extract model create!\n");
|
||||
}
|
||||
|
@ -68,7 +65,7 @@ public:
|
|||
this->mean.emplace_back(tmp.as<float>());
|
||||
}
|
||||
for (auto tmp : item["std"]) {
|
||||
this->std.emplace_back(1 / tmp.as<float>());
|
||||
this->std.emplace_back(tmp.as<float>());
|
||||
}
|
||||
this->scale = item["scale"].as<double>();
|
||||
}
|
||||
|
@ -77,15 +74,19 @@ public:
|
|||
|
||||
void RunRecModel(const cv::Mat &img, double &cost_time, std::vector<float> &feature);
|
||||
//void PostProcess(std::vector<float> &feature);
|
||||
cv::Mat ResizeImage(const cv::Mat &img);
|
||||
void NeonMeanScale(const float *din, float *dout, int size);
|
||||
void FeatureNorm(std::vector<float> &featuer);
|
||||
|
||||
private:
|
||||
std::shared_ptr<PaddlePredictor> predictor;
|
||||
//std::vector<std::string> label_list;
|
||||
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||||
std::vector<float> std = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
|
||||
std::vector<float> std = {0.229f, 0.224f, 0.225f};
|
||||
double scale = 0.00392157;
|
||||
float size = 224;
|
||||
int size = 224;
|
||||
|
||||
// pre-process
|
||||
Resize resize_op_;
|
||||
NormalizeImage normalize_op_;
|
||||
Permute permute_op_;
|
||||
};
|
||||
} // namespace PPShiTu
|
||||
|
|
|
@ -71,6 +71,8 @@ class NormalizeImage : public PreprocessOp {
|
|||
}
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
void Run_feature(cv::Mat *im, const std::vector<float> &mean,
|
||||
const std::vector<float> &std, float scale);
|
||||
|
||||
private:
|
||||
// CHW or HWC
|
||||
|
@ -83,6 +85,7 @@ class Permute : public PreprocessOp {
|
|||
public:
|
||||
virtual void Init(const Json::Value& item) {}
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
void Run_feature(const cv::Mat *im, float *data);
|
||||
};
|
||||
|
||||
class Resize : public PreprocessOp {
|
||||
|
@ -101,6 +104,7 @@ class Resize : public PreprocessOp {
|
|||
std::pair<float, float> GenerateScale(const cv::Mat& im);
|
||||
|
||||
virtual void Run(cv::Mat* im, ImageBlob* data);
|
||||
void Run_feature(const cv::Mat &img, cv::Mat &resize_img, int max_size_len, int size=0);
|
||||
|
||||
private:
|
||||
int interp_;
|
||||
|
|
|
@ -38,6 +38,24 @@ struct ObjectResult {
|
|||
std::vector<RESULT> rec_result;
|
||||
};
|
||||
|
||||
void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold, bool rec_nms=false);
|
||||
void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold,
|
||||
bool rec_nms = false);
|
||||
|
||||
template <typename T>
|
||||
static inline bool SortScorePairDescend(const std::pair<float, T> &pair1,
|
||||
const std::pair<float, T> &pair2){
|
||||
return pair1.first > pair2.first;
|
||||
}
|
||||
|
||||
float RectOverlap(const ObjectResult &a,
|
||||
const ObjectResult &b);
|
||||
|
||||
inline void
|
||||
GetMaxScoreIndex(const std::vector<ObjectResult> &det_result,
|
||||
const float threshold,
|
||||
std::vector<std::pair<float, int>> &score_index_vec);
|
||||
|
||||
void NMSBoxes(const std::vector<ObjectResult> det_result,
|
||||
const float score_threshold, const float nms_threshold,
|
||||
std::vector<int> &indices);
|
||||
} // namespace PPShiTu
|
||||
|
|
|
@ -13,24 +13,30 @@
|
|||
// limitations under the License.
|
||||
|
||||
#include "include/feature_extractor.h"
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
|
||||
namespace PPShiTu {
|
||||
void FeatureExtract::RunRecModel(const cv::Mat &img,
|
||||
double &cost_time,
|
||||
std::vector<float> &feature) {
|
||||
// Read img
|
||||
cv::Mat resize_image = ResizeImage(img);
|
||||
|
||||
cv::Mat img_fp;
|
||||
resize_image.convertTo(img_fp, CV_32FC3, scale);
|
||||
this->resize_op_.Run_feature(img, img_fp, this->size, this->size);
|
||||
this->normalize_op_.Run_feature(&img_fp, this->mean, this->std, this->scale);
|
||||
std::vector<float> input(1 * 3 * img_fp.rows * img_fp.cols, 0.0f);
|
||||
this->permute_op_.Run_feature(&img_fp, input.data());
|
||||
|
||||
// Prepare input data from image
|
||||
std::unique_ptr<Tensor> input_tensor(std::move(this->predictor->GetInput(0)));
|
||||
input_tensor->Resize({1, 3, img_fp.rows, img_fp.cols});
|
||||
input_tensor->Resize({1, 3, this->size, this->size});
|
||||
auto *data0 = input_tensor->mutable_data<float>();
|
||||
|
||||
const float *dimg = reinterpret_cast<const float *>(img_fp.data);
|
||||
NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols);
|
||||
// const float *dimg = reinterpret_cast<const float *>(img_fp.data);
|
||||
// NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols);
|
||||
for(int i=0; i < input.size(); ++i){
|
||||
data0[i] = input[i];
|
||||
}
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
// Run predictor
|
||||
|
@ -55,62 +61,14 @@ void FeatureExtract::RunRecModel(const cv::Mat &img,
|
|||
output_tensor->CopyToCpu(feature.data());
|
||||
|
||||
//postprocess include sqrt or binarize.
|
||||
//PostProcess(feature);
|
||||
FeatureNorm(feature);
|
||||
return;
|
||||
}
|
||||
|
||||
// void FeatureExtract::PostProcess(std::vector<float> &feature){
|
||||
// float feature_sqrt = std::sqrt(std::inner_product(
|
||||
// feature.begin(), feature.end(), feature.begin(), 0.0f));
|
||||
// for (int i = 0; i < feature.size(); ++i)
|
||||
// feature[i] /= feature_sqrt;
|
||||
// }
|
||||
|
||||
void FeatureExtract::NeonMeanScale(const float *din, float *dout, int size) {
|
||||
|
||||
if (this->mean.size() != 3 || this->std.size() != 3) {
|
||||
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
|
||||
exit(1);
|
||||
}
|
||||
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
|
||||
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
|
||||
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
|
||||
float32x4_t vscale0 = vdupq_n_f32(std[0]);
|
||||
float32x4_t vscale1 = vdupq_n_f32(std[1]);
|
||||
float32x4_t vscale2 = vdupq_n_f32(std[2]);
|
||||
|
||||
float *dout_c0 = dout;
|
||||
float *dout_c1 = dout + size;
|
||||
float *dout_c2 = dout + size * 2;
|
||||
|
||||
int i = 0;
|
||||
for (; i < size - 3; i += 4) {
|
||||
float32x4x3_t vin3 = vld3q_f32(din);
|
||||
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
|
||||
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
|
||||
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
|
||||
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
|
||||
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
|
||||
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
|
||||
vst1q_f32(dout_c0, vs0);
|
||||
vst1q_f32(dout_c1, vs1);
|
||||
vst1q_f32(dout_c2, vs2);
|
||||
|
||||
din += 12;
|
||||
dout_c0 += 4;
|
||||
dout_c1 += 4;
|
||||
dout_c2 += 4;
|
||||
}
|
||||
for (; i < size; i++) {
|
||||
*(dout_c0++) = (*(din++) - this->mean[0]) * this->std[0];
|
||||
*(dout_c1++) = (*(din++) - this->mean[1]) * this->std[1];
|
||||
*(dout_c2++) = (*(din++) - this->mean[2]) * this->std[2];
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat FeatureExtract::ResizeImage(const cv::Mat &img) {
|
||||
cv::Mat resize_img;
|
||||
cv::resize(img, resize_img, cv::Size(this->size, this->size));
|
||||
return resize_img;
|
||||
void FeatureExtract::FeatureNorm(std::vector<float> &feature){
|
||||
float feature_sqrt = std::sqrt(std::inner_product(
|
||||
feature.begin(), feature.end(), feature.begin(), 0.0f));
|
||||
for (int i = 0; i < feature.size(); ++i)
|
||||
feature[i] /= feature_sqrt;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
#include "include/object_detector.h"
|
||||
#include "include/preprocess_op.h"
|
||||
#include "include/vector_search.h"
|
||||
#include "include/utils.h"
|
||||
#include "json/json.h"
|
||||
|
||||
Json::Value RT_Config;
|
||||
|
@ -158,6 +159,11 @@ int main(int argc, char **argv) {
|
|||
<< " [image_dir]>" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
float rec_nms_threshold = 0.05;
|
||||
if (RT_Config["Global"]["rec_nms_thresold"].isDouble())
|
||||
rec_nms_threshold = RT_Config["Global"]["rec_nms_thresold"].as<float>();
|
||||
|
||||
// Load model and create a object detector
|
||||
PPShiTu::ObjectDetector det(
|
||||
RT_Config, RT_Config["Global"]["det_model_path"].as<std::string>(),
|
||||
|
@ -174,6 +180,7 @@ int main(int argc, char **argv) {
|
|||
// for vector search
|
||||
std::vector<float> feature;
|
||||
std::vector<float> features;
|
||||
std::vector<int> indeices;
|
||||
double rec_time;
|
||||
if (!RT_Config["Global"]["infer_imgs"].as<std::string>().empty() ||
|
||||
!img_dir.empty()) {
|
||||
|
@ -208,9 +215,9 @@ int main(int argc, char **argv) {
|
|||
RT_Config["Global"]["max_det_results"].as<int>(), false, &det);
|
||||
|
||||
// add the whole image for recognition to improve recall
|
||||
// PPShiTu::ObjectResult result_whole_img = {
|
||||
// {0, 0, srcimg.cols, srcimg.rows}, 0, 1.0};
|
||||
// det_result.push_back(result_whole_img);
|
||||
PPShiTu::ObjectResult result_whole_img = {
|
||||
{0, 0, srcimg.cols, srcimg.rows}, 0, 1.0};
|
||||
det_result.push_back(result_whole_img);
|
||||
|
||||
// get rec result
|
||||
PPShiTu::SearchResult search_result;
|
||||
|
@ -225,10 +232,18 @@ int main(int argc, char **argv) {
|
|||
|
||||
// do vectore search
|
||||
search_result = searcher.Search(features.data(), det_result.size());
|
||||
for (int i = 0; i < det_result.size(); ++i) {
|
||||
det_result[i].confidence = search_result.D[search_result.return_k * i];
|
||||
}
|
||||
NMSBoxes(det_result, searcher.GetThreshold(), rec_nms_threshold, indeices);
|
||||
PrintResult(img_path, det_result, searcher, search_result);
|
||||
|
||||
batch_imgs.clear();
|
||||
det_result.clear();
|
||||
features.clear();
|
||||
feature.clear();
|
||||
indeices.clear();
|
||||
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
|
|
@ -20,7 +20,7 @@
|
|||
|
||||
namespace PPShiTu {
|
||||
|
||||
void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void InitInfo::Run(cv::Mat *im, ImageBlob *data) {
|
||||
data->im_shape_ = {static_cast<float>(im->rows),
|
||||
static_cast<float>(im->cols)};
|
||||
data->scale_factor_ = {1., 1.};
|
||||
|
@ -28,10 +28,10 @@ void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
|
|||
static_cast<float>(im->cols)};
|
||||
}
|
||||
|
||||
void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void NormalizeImage::Run(cv::Mat *im, ImageBlob *data) {
|
||||
double e = 1.0;
|
||||
if (is_scale_) {
|
||||
e *= 1./255.0;
|
||||
e *= 1. / 255.0;
|
||||
}
|
||||
(*im).convertTo(*im, CV_32FC3, e);
|
||||
for (int h = 0; h < im->rows; h++) {
|
||||
|
@ -46,35 +46,61 @@ void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
|
|||
}
|
||||
}
|
||||
|
||||
void Permute::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void NormalizeImage::Run_feature(cv::Mat *im, const std::vector<float> &mean,
|
||||
const std::vector<float> &std, float scale) {
|
||||
(*im).convertTo(*im, CV_32FC3, scale);
|
||||
for (int h = 0; h < im->rows; h++) {
|
||||
for (int w = 0; w < im->cols; w++) {
|
||||
im->at<cv::Vec3f>(h, w)[0] =
|
||||
(im->at<cv::Vec3f>(h, w)[0] - mean[0]) / std[0];
|
||||
im->at<cv::Vec3f>(h, w)[1] =
|
||||
(im->at<cv::Vec3f>(h, w)[1] - mean[1]) / std[1];
|
||||
im->at<cv::Vec3f>(h, w)[2] =
|
||||
(im->at<cv::Vec3f>(h, w)[2] - mean[2]) / std[2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Permute::Run(cv::Mat *im, ImageBlob *data) {
|
||||
(*im).convertTo(*im, CV_32FC3);
|
||||
int rh = im->rows;
|
||||
int rw = im->cols;
|
||||
int rc = im->channels();
|
||||
(data->im_data_).resize(rc * rh * rw);
|
||||
float* base = (data->im_data_).data();
|
||||
float *base = (data->im_data_).data();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
void Resize::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void Permute::Run_feature(const cv::Mat *im, float *data) {
|
||||
int rh = im->rows;
|
||||
int rw = im->cols;
|
||||
int rc = im->channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
void Resize::Run(cv::Mat *im, ImageBlob *data) {
|
||||
auto resize_scale = GenerateScale(*im);
|
||||
data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
|
||||
static_cast<float>(im->rows * resize_scale.second)};
|
||||
data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
|
||||
static_cast<float>(im->rows * resize_scale.second)};
|
||||
cv::resize(
|
||||
*im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
|
||||
cv::resize(*im, *im, cv::Size(), resize_scale.first, resize_scale.second,
|
||||
interp_);
|
||||
data->im_shape_ = {
|
||||
static_cast<float>(im->rows), static_cast<float>(im->cols),
|
||||
static_cast<float>(im->rows),
|
||||
static_cast<float>(im->cols),
|
||||
};
|
||||
data->scale_factor_ = {
|
||||
resize_scale.second, resize_scale.first,
|
||||
resize_scale.second,
|
||||
resize_scale.first,
|
||||
};
|
||||
}
|
||||
|
||||
std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
|
||||
std::pair<float, float> Resize::GenerateScale(const cv::Mat &im) {
|
||||
std::pair<float, float> resize_scale;
|
||||
int origin_w = im.cols;
|
||||
int origin_h = im.rows;
|
||||
|
@ -101,7 +127,30 @@ std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
|
|||
return resize_scale;
|
||||
}
|
||||
|
||||
void PadStride::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void Resize::Run_feature(const cv::Mat &img, cv::Mat &resize_img, int resize_short_size,
|
||||
int size) {
|
||||
int resize_h = 0;
|
||||
int resize_w = 0;
|
||||
if (size > 0) {
|
||||
resize_h = size;
|
||||
resize_w = size;
|
||||
} else {
|
||||
int w = img.cols;
|
||||
int h = img.rows;
|
||||
|
||||
float ratio = 1.f;
|
||||
if (h < w) {
|
||||
ratio = float(resize_short_size) / float(h);
|
||||
} else {
|
||||
ratio = float(resize_short_size) / float(w);
|
||||
}
|
||||
resize_h = round(float(h) * ratio);
|
||||
resize_w = round(float(w) * ratio);
|
||||
}
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
}
|
||||
|
||||
void PadStride::Run(cv::Mat *im, ImageBlob *data) {
|
||||
if (stride_ <= 0) {
|
||||
return;
|
||||
}
|
||||
|
@ -110,48 +159,44 @@ void PadStride::Run(cv::Mat* im, ImageBlob* data) {
|
|||
int rw = im->cols;
|
||||
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
|
||||
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
|
||||
cv::copyMakeBorder(
|
||||
*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
|
||||
cv::copyMakeBorder(*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT,
|
||||
cv::Scalar(0));
|
||||
data->in_net_shape_ = {
|
||||
static_cast<float>(im->rows), static_cast<float>(im->cols),
|
||||
static_cast<float>(im->rows),
|
||||
static_cast<float>(im->cols),
|
||||
};
|
||||
}
|
||||
|
||||
void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
|
||||
void TopDownEvalAffine::Run(cv::Mat *im, ImageBlob *data) {
|
||||
cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
|
||||
// todo: Simd::ResizeBilinear();
|
||||
data->in_net_shape_ = {
|
||||
static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
|
||||
static_cast<float>(trainsize_[1]),
|
||||
static_cast<float>(trainsize_[0]),
|
||||
};
|
||||
}
|
||||
|
||||
// Preprocessor op running order
|
||||
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
|
||||
"DetTopDownEvalAffine",
|
||||
"DetResize",
|
||||
"DetNormalizeImage",
|
||||
"DetPadStride",
|
||||
"DetPermute"};
|
||||
const std::vector<std::string> Preprocessor::RUN_ORDER = {
|
||||
"InitInfo", "DetTopDownEvalAffine", "DetResize",
|
||||
"DetNormalizeImage", "DetPadStride", "DetPermute"};
|
||||
|
||||
void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
|
||||
for (const auto& name : RUN_ORDER) {
|
||||
void Preprocessor::Run(cv::Mat *im, ImageBlob *data) {
|
||||
for (const auto &name : RUN_ORDER) {
|
||||
if (ops_.find(name) != ops_.end()) {
|
||||
ops_[name]->Run(im, data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CropImg(cv::Mat& img,
|
||||
cv::Mat& crop_img,
|
||||
std::vector<int>& area,
|
||||
std::vector<float>& center,
|
||||
std::vector<float>& scale,
|
||||
void CropImg(cv::Mat &img, cv::Mat &crop_img, std::vector<int> &area,
|
||||
std::vector<float> ¢er, std::vector<float> &scale,
|
||||
float expandratio) {
|
||||
int crop_x1 = std::max(0, area[0]);
|
||||
int crop_y1 = std::max(0, area[1]);
|
||||
int crop_x2 = std::min(img.cols - 1, area[2]);
|
||||
int crop_y2 = std::min(img.rows - 1, area[3]);
|
||||
|
||||
|
||||
int center_x = (crop_x1 + crop_x2) / 2.;
|
||||
int center_y = (crop_y1 + crop_y2) / 2.;
|
||||
int half_h = (crop_y2 - crop_y1) / 2.;
|
||||
|
@ -182,4 +227,4 @@ void CropImg(cv::Mat& img,
|
|||
scale.emplace_back((crop_y2 - crop_y1));
|
||||
}
|
||||
|
||||
} // namespace PPShiTu
|
||||
} // namespace PPShiTu
|
||||
|
|
|
@ -54,4 +54,55 @@ void nms(std::vector<ObjectResult> &input_boxes, float nms_threshold,
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
float RectOverlap(const ObjectResult &a,
|
||||
const ObjectResult &b) {
|
||||
float Aa = (a.rect[2] - a.rect[0] + 1) * (a.rect[3] - a.rect[1] + 1);
|
||||
float Ab = (b.rect[2] - b.rect[0] + 1) * (b.rect[3] - b.rect[1] + 1);
|
||||
|
||||
int iou_w = max(min(a.rect[2], b.rect[2]) - max(a.rect[0], b.rect[0]) + 1, 0);
|
||||
int iou_h = max(min(a.rect[3], b.rect[3]) - max(a.rect[1], b.rect[1]) + 1, 0);
|
||||
float Aab = iou_w * iou_h;
|
||||
return Aab / (Aa + Ab - Aab);
|
||||
}
|
||||
|
||||
inline void
|
||||
GetMaxScoreIndex(const std::vector<ObjectResult> &det_result,
|
||||
const float threshold,
|
||||
std::vector<std::pair<float, int>> &score_index_vec) {
|
||||
// Generate index score pairs.
|
||||
for (size_t i = 0; i < det_result.size(); ++i) {
|
||||
if (det_result[i].confidence > threshold) {
|
||||
score_index_vec.push_back(std::make_pair(det_result[i].confidence, i));
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the score pair according to the scores in descending order
|
||||
std::stable_sort(score_index_vec.begin(), score_index_vec.end(),
|
||||
SortScorePairDescend<int>);
|
||||
}
|
||||
|
||||
void NMSBoxes(const std::vector<ObjectResult> det_result,
|
||||
const float score_threshold, const float nms_threshold,
|
||||
std::vector<int> &indices) {
|
||||
int a = 1;
|
||||
// Get top_k scores (with corresponding indices).
|
||||
std::vector<std::pair<float, int>> score_index_vec;
|
||||
GetMaxScoreIndex(det_result, score_threshold, score_index_vec);
|
||||
|
||||
// Do nms
|
||||
indices.clear();
|
||||
for (size_t i = 0; i < score_index_vec.size(); ++i) {
|
||||
const int idx = score_index_vec[i].second;
|
||||
bool keep = true;
|
||||
for (int k = 0; k < (int)indices.size() && keep; ++k) {
|
||||
const int kept_idx = indices[k];
|
||||
float overlap = RectOverlap(det_result[idx], det_result[kept_idx]);
|
||||
keep = overlap <= nms_threshold;
|
||||
}
|
||||
if (keep)
|
||||
indices.push_back(idx);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PPShiTu
|
||||
|
|
|
@ -64,4 +64,4 @@ const SearchResult &VectorSearch::Search(float *feature, int query_number) {
|
|||
const std::string &VectorSearch::GetLabel(faiss::Index::idx_t ind) {
|
||||
return this->id_map.at(ind);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue