diff --git a/docs/zh_CN/tutorials/getting_started.md b/docs/zh_CN/tutorials/getting_started.md index 5a3ede676..7356e2c1a 100644 --- a/docs/zh_CN/tutorials/getting_started.md +++ b/docs/zh_CN/tutorials/getting_started.md @@ -22,13 +22,13 @@ PaddleClas目前支持的训练/评估环境如下: 准备好配置文件之后,可以使用下面的方式启动训练。 ``` -python tools/train.py \ - -c configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="" \ - -o use_gpu=True +python3 tools/train.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Arch.pretrained=False \ + -o Global.device=gpu ``` -其中,`-c`用于指定配置文件的路径,`-o`用于指定需要修改或者添加的参数,其中`-o pretrained_model=""`表示不使用预训练模型,`-o use_gpu=True`表示使用GPU进行训练。如果希望使用CPU进行训练,则需要将`use_gpu`设置为`False`。 +其中,`-c`用于指定配置文件的路径,`-o`用于指定需要修改或者添加的参数,其中`-o Arch.pretrained=False`表示不使用预训练模型,`-o Global.device=gpu`表示使用GPU进行训练。如果希望使用CPU进行训练,则需要将`Global.device`设置为`cpu`。 更详细的训练配置,也可以直接修改模型对应的配置文件。具体配置参数参考[配置文档](config.md)。 @@ -37,9 +37,9 @@ python tools/train.py \ * 如果在训练中使用了mixup或者cutmix的数据增广方式,那么日志中将不会打印top-1与top-k(默认为5)信息: ``` ... - epoch:0 , train step:20 , loss: 4.53660, lr: 0.003750, batch_cost: 1.23101 s, reader_cost: 0.74311 s, ips: 25.99489 images/sec, eta: 0:12:43 + [Train][Epoch 3/20][Avg]CELoss: 6.46287, loss: 6.46287 ... - END epoch:1 valid top1: 0.01569, top5: 0.06863, loss: 4.61747, batch_cost: 0.26155 s, reader_cost: 0.16952 s, batch_cost_sum: 10.72348 s, ips: 76.46772 images/sec. + [Eval][Epoch 3][Avg]CELoss: 5.94309, loss: 5.94309, top1: 0.01961, top5: 0.07941 ... ``` @@ -47,9 +47,9 @@ python tools/train.py \ ``` ... - epoch:0 , train step:30 , top1: 0.06250, top5: 0.09375, loss: 4.62766, lr: 0.003728, batch_cost: 0.64089 s, reader_cost: 0.18857 s, ips: 49.93080 images/sec, eta: 0:06:18 + [Train][Epoch 3/20][Avg]CELoss: 6.12570, loss: 6.12570, top1: 0.01765, top5: 0.06961 ... - END epoch:0 train top1: 0.01310, top5: 0.04738, loss: 4.65124, batch_cost: 0.64089 s, reader_cost: 0.18857 s, batch_cost_sum: 13.45863 s, ips: 49.93080 images/sec. + [Eval][Epoch 3][Avg]CELoss: 5.40727, loss: 5.40727, top1: 0.07549, top5: 0.20980 ... ``` @@ -60,13 +60,13 @@ python tools/train.py \ 根据自己的数据集路径设置好配置文件后,可以通过加载预训练模型的方式进行微调,如下所示。 ``` -python tools/train.py \ - -c configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="./pretrained/MobileNetV3_large_x1_0_pretrained" \ - -o use_gpu=True +python3 tools/train.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Arch.pretrained=True \ + -o Global.device=gpu ``` -其中`-o pretrained_model`用于设置加载预训练模型权重文件的地址,使用时需要换成自己的预训练模型权重文件的路径,也可以直接在配置文件中修改该路径。 +其中`Arch.pretrained`设置为`True`表示加载ImageNet的预训练模型,此外,`Arch.pretrained`也可以指定具体的模型权重文件的地址,使用时需要换成自己的预训练模型权重文件的路径。 我们也提供了大量基于`ImageNet-1k`数据集的预训练模型,模型列表及下载地址详见[模型库概览](../models/models_intro.md)。 @@ -76,28 +76,29 @@ python tools/train.py \ 如果训练任务因为其他原因被终止,也可以加载断点权重文件,继续训练: ``` -python tools/train.py \ - -c configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o checkpoints="./output/MobileNetV3_large_x1_0/5/ppcls" \ - -o last_epoch=5 \ - -o use_gpu=True +python3 tools/train.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Global.checkpoints="./output/MobileNetV3_large_x1_0/epoch_5" \ + -o Optimizer.lr.last_epoch=5 \ + -o Global.device=gpu ``` 其中配置文件不需要做任何修改,只需要在继续训练时设置`checkpoints`参数即可,表示加载的断点权重文件路径,使用该参数会同时加载保存的断点权重和学习率、优化器等信息。 **注意**: -* 参数`-o last_epoch=5`表示将上一次训练轮次数记为`5`,即本次训练轮次数从`6`开始计算,该值默认为-1,表示本次训练轮次数从`0`开始计算。 +* 参数`-o Optimizer.lr.last_epoch=5`表示将上一次训练轮次数记为`5`,即本次训练轮次数从`6`开始计算,该值默认为-1,表示本次训练轮次数从`0`开始计算。 + +* `-o Global.checkpoints`参数无需包含断点权重文件的后缀名,上述训练命令会在训练过程中生成如下所示的断点权重文件,若想从断点`5`继续训练,则`Global.checkpoints`参数只需设置为`"../output/MobileNetV3_large_x1_0/epoch_5"`,PaddleClas会自动补充后缀名。 -* `-o checkpoints`参数无需包含断点权重文件的后缀名,上述训练命令会在训练过程中生成如下所示的断点权重文件,若想从断点`5`继续训练,则`checkpoints`参数只需设置为`"./output/MobileNetV3_large_x1_0_gpupaddle/5/ppcls"`,PaddleClas会自动补充后缀名。 ```shell - output/ - └── MobileNetV3_large_x1_0 - ├── 0 - │ ├── ppcls.pdopt - │ └── ppcls.pdparams - ├── 1 - │ ├── ppcls.pdopt - │ └── ppcls.pdparams + output + ├── MobileNetV3_large_x1_0 + │   ├── best_model.pdopt + │   ├── best_model.pdparams + │   ├── best_model.pdstates + │   ├── epoch_1.pdopt + │   ├── epoch_1.pdparams + │   ├── epoch_1.pdstates . . . @@ -109,20 +110,18 @@ python tools/train.py \ 可以通过以下命令进行模型评估。 ```bash -python tools/eval.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="./output/MobileNetV3_large_x1_0/best_model/ppcls"\ - -o load_static_weights=False +python3 tools/eval.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Global.pretrained_model=./output/MobileNetV3_large_x1_0/best_model ``` -上述命令将使用`./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml`作为配置文件,对上述训练得到的模型`./output/MobileNetV3_large_x1_0/best_model/ppcls`进行评估。你也可以通过更改配置文件中的参数来设置评估,也可以通过`-o`参数更新配置,如上所示。 +上述命令将使用`./configs/quick_start/MobileNetV3_large_x1_0.yaml`作为配置文件,对上述训练得到的模型`./output/MobileNetV3_large_x1_0/best_model`进行评估。你也可以通过更改配置文件中的参数来设置评估,也可以通过`-o`参数更新配置,如上所示。 可配置的部分评估参数说明如下: -* `ARCHITECTURE.name`:模型名称 -* `pretrained_model`:待评估的模型文件路径 -* `load_static_weights`:待评估模型是否为静态图模型 +* `Arch.name`:模型名称 +* `Global.pretrained_model`:待评估的模型文件路径 -**注意:** 如果模型为动态图模型,则在加载待评估模型时,需要指定模型文件的路径,但无需包含文件后缀名,PaddleClas会自动补齐`.pdparams`的后缀,如[1.3 模型恢复训练](#1.3)。 +**注意:** 在加载待评估模型时,需要指定模型文件的路径,但无需包含文件后缀名,PaddleClas会自动补齐`.pdparams`的后缀,如[1.3 模型恢复训练](#1.3)。 ## 2. 基于Linux+GPU的模型训练与评估 @@ -138,24 +137,12 @@ python tools/eval.py \ export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -m paddle.distributed.launch \ +python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml ``` -其中,`-c`用于指定配置文件的路径,可通过配置文件修改相关训练配置信息,也可以通过添加`-o`参数来更新配置: - -```bash -python -m paddle.distributed.launch \ - --gpus="0,1,2,3" \ - tools/train.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="" \ - -o use_gpu=True -``` -`-o`用于指定需要修改或者添加的参数,其中`-o pretrained_model=""`表示不使用预训练模型,`-o use_gpu=True`表示使用GPU进行训练。 - 输出日志信息的格式同上,详见[1.1 模型训练](#1.1)。 ### 2.2 模型微调 @@ -165,14 +152,14 @@ python -m paddle.distributed.launch \ ``` export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -m paddle.distributed.launch \ +python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="./pretrained/MobileNetV3_large_x1_0_pretrained" + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Arch.pretrained=True ``` -其中`pretrained_model`用于设置加载预训练权重文件的路径,使用时需要换成自己的预训练模型权重文件路径,也可以直接在配置文件中修改该路径。 +其中`Arch.pretrained`为`True`或`False`,当然也可以设置加载预训练权重文件的路径,使用时需要换成自己的预训练模型权重文件路径,也可以直接在配置文件中修改该路径。 30分钟玩转PaddleClas[尝鲜版](./quick_start_new_user.md)与[进阶版](./quick_start_professional.md)中包含大量模型微调的示例,可以参考该章节在特定的数据集上进行模型微调。 @@ -185,16 +172,16 @@ python -m paddle.distributed.launch \ ``` export CUDA_VISIBLE_DEVICES=0,1,2,3 -python -m paddle.distributed.launch \ +python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o checkpoints="./output/MobileNetV3_large_x1_0/5/ppcls" \ - -o last_epoch=5 \ - -o use_gpu=True + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Global.checkpoints="./output/MobileNetV3_large_x1_0/epoch_5" \ + -o Optimizer.lr.last_epoch=5 \ + -o Global.device=gpu ``` -其中配置文件不需要做任何修改,只需要在训练时设置`checkpoints`参数与`last_epoch`参数即可,该参数表示加载的断点权重文件路径,使用该参数会同时加载保存的模型参数权重和学习率、优化器等信息,详见[1.3 模型恢复训练](#1.3)。 +其中配置文件不需要做任何修改,只需要在训练时设置`Global.checkpoints`参数与`Optimizer.lr.last_epoch`参数即可,该参数表示加载的断点权重文件路径,使用该参数会同时加载保存的模型参数权重和学习率、优化器等信息,详见[1.3 模型恢复训练](#1.3)。 ### 2.4 模型评估 @@ -202,10 +189,11 @@ python -m paddle.distributed.launch \ 可以通过以下命令进行模型评估。 ```bash -python tools/eval.py \ - -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml \ - -o pretrained_model="./output/MobileNetV3_large_x1_0/best_model/ppcls"\ - -o load_static_weights=False +export CUDA_VISIBLE_DEVICES=0,1,2,3 +python3 -m paddle.distributed.launch \ + tools/eval.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Global.pretrained_model=./output/MobileNetV3_large_x1_0/best_model ``` 参数说明详见[1.4 模型评估](#1.4)。 @@ -217,26 +205,16 @@ python tools/eval.py \ 模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: ```python -python tools/infer/infer.py \ - -i 待预测的图片文件路径 \ - --model MobileNetV3_large_x1_0 \ - --pretrained_model "./output/MobileNetV3_large_x1_0/best_model/ppcls" \ - --use_gpu True \ - --class_num 1000 + +python3 tools/infer.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Infer.infer_imgs=dataset/flowers102/jpg/image_00001.jpg \ + -o Global.pretrained_model=./output/MobileNetV3_large_x1_0/best_model ``` 参数说明: -+ `image_file`(简写 i):待预测的图片文件路径或者批量预测时的图片文件夹,如 `./test.jpeg` -+ `model`:模型名称,如 `MobileNetV3_large_x1_0` -+ `pretrained_model`:模型权重文件路径,如 `./output/MobileNetV3_large_x1_0/best_model/ppcls` -+ `use_gpu` : 是否开启GPU训练,默认值:`True` -+ `class_num` : 类别数,默认为1000,需要根据自己的数据进行修改。 -+ `resize_short`: 对输入图像进行等比例缩放,表示最短边的尺寸,默认值:`256` -+ `resize`: 对`resize_short`操作后的进行居中裁剪,表示裁剪的尺寸,默认值:`224` -+ `pre_label_image` : 是否对图像数据进行预标注,默认值:`False` -+ `pre_label_out_idr` : 预标注图像数据的输出文件夹,当`pre_label_image=True`时,会在该文件夹下面生成很多个子文件夹,每个文件夹名称为类别id,其中存储模型预测属于该类别的所有图像。 - -**注意**: 如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要设置参数`resize_short=384`, `resize=384`。 ++ `Infer.infer_imgs`:待预测的图片文件路径或者批量预测时的图片文件夹。 ++ `Global.pretrained_model`:模型权重文件路径,如 `./output/MobileNetV3_large_x1_0/best_model` @@ -246,42 +224,39 @@ python tools/infer/infer.py \ 首先,对训练好的模型进行转换: ```bash -python tools/export_model.py \ - --model MobileNetV3_large_x1_0 \ - --pretrained_model ./output/MobileNetV3_large_x1_0/best_model/ppcls \ - --output_path ./inference \ - --class_dim 1000 +python3 tools/export_model.py \ + -c ./ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml \ + -o Global.pretrained_model=output/MobileNetV3_large_x1_0/best_model ``` -其中,参数`--model`用于指定模型名称,`--pretrained_model`用于指定模型文件路径,该路径仍无需包含模型文件后缀名(如[1.3 模型恢复训练](#1.3)),`--output_path`用于指定转换后模型的存储路径,`class_dim`表示模型所包含的类别数,默认为1000。 -**注意**: -1. `--output_path`表示输出的inference模型文件夹路径,若`--output_path=./inference`,则会在`inference`文件夹下生成`inference.pdiparams`、`inference.pdmodel`和`inference.pdiparams.info`文件。 -2. 可以通过设置参数`--img_size`指定模型输入图像的`shape`,默认为`224`,表示图像尺寸为`224*224`,请根据实际情况修改。 +其中,`Global.pretrained_model`用于指定模型文件路径,该路径仍无需包含模型文件后缀名(如[1.3 模型恢复训练](#1.3))。 + 上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理: +进入deploy目录下: + ```bash -python tools/infer/predict.py \ - --image_file 图片路径 \ - --model_file "./inference/inference.pdmodel" \ - --params_file "./inference/inference.pdiparams" \ - --use_gpu=True \ - --use_tensorrt=False +cd deploy ``` + +执行命令进行预测,由于默认class_id_map_file是ImageNet数据集的映射文件,所以此处需要置None。 + +```bash +python3 python/predict_cls.py \ + -c configs/inference_cls.yaml \ + -o Global.infer_imgs=../dataset/flowers102/jpg/image_00001.jpg \ + -o Global.inference_model_dir=../inference/ \ + -o PostProcess.class_id_map_file=None + + 其中: -+ `image_file`:待预测的图片文件路径,如 `./test.jpeg` -+ `model_file`:模型结构文件路径,如 `./inference/inference.pdmodel` -+ `params_file`:模型权重文件路径,如 `./inference/inference.pdiparams` -+ `use_tensorrt`:是否使用 TesorRT 预测引擎,默认值:`True` -+ `use_gpu`:是否使用 GPU 预测,默认值:`True` -+ `enable_mkldnn`:是否启用`MKL-DNN`加速,默认为`False`。注意`enable_mkldnn`与`use_gpu`同时为`True`时,将忽略`enable_mkldnn`,而使用GPU运行。 -+ `resize_short`: 对输入图像进行等比例缩放,表示最短边的尺寸,默认值:`256` -+ `resize`: 对`resize_short`操作后的进行居中裁剪,表示裁剪的尺寸,默认值:`224` -+ `enable_calc_topk`: 是否计算预测结果的Topk精度指标,默认为`False`, -+ `gt_label_path`: 图像文件名以及真值标签文件,当`enable_calc_topk`为True时生效,用于读取待预测的图像列表及其标签。 ++ `Global.infer_imgs`:待预测的图片文件路径。 ++ `Global.inference_model_dir`:inference模型结构文件路径,如 `../inference/inference.pdmodel` ++ `Global.use_tensorrt`:是否使用 TesorRT 预测引擎,默认值:`False` ++ `Global.use_gpu`:是否使用 GPU 预测,默认值:`True` ++ `Global.enable_mkldnn`:是否启用`MKL-DNN`加速,默认为`False`。注意`enable_mkldnn`与`use_gpu`同时为`True`时,将忽略`enable_mkldnn`,而使用GPU运行。 ++ `Global.use_fp16`:是否启用`FP16`,默认为`False`。 - -**注意**: 如果使用`Transformer`系列模型,如`DeiT_***_384`, `ViT_***_384`等,请注意模型的输入数据尺寸,需要设置参数`resize_short=384`, `resize=384`。 - -* 如果你希望评测模型速度,建议使用该脚本(`tools/infer/predict.py`),同时开启TensorRT加速预测。 +* 如果你希望提升评测模型速度,使用gpu评测时,建议开启TensorRT加速预测,使用cpu评测时,建议开启MKL-DNN加速预测。 diff --git a/docs/zh_CN/tutorials/quick_start_community.md b/docs/zh_CN/tutorials/quick_start_community.md index 69868ae00..a39686fb2 100644 --- a/docs/zh_CN/tutorials/quick_start_community.md +++ b/docs/zh_CN/tutorials/quick_start_community.md @@ -51,34 +51,30 @@ train/n01440764/n01440764_10027.JPEG 0 对于读入的数据,需要通过数据转换,将原始的图像数据进行转换。训练时,标准的数据预处理包含:`DecodeImage`, `RandCropImage`, `RandFlipImage`, `NormalizeImage`, `ToCHWImage`。在配置文件中体现如下,数据预处理主要包含在`transforms`字段中,以列表形式呈现,会按照顺序对数据依次做这些转换。 ```yaml -TRAIN: - batch_size: 256 # 所有训练设备上的总batch size - num_workers: 4 # 训练时每块设备上的进程数 - file_list: "./dataset/ILSVRC2012/train_list.txt" # 训练标签文件 - data_dir: "./dataset/ILSVRC2012/" # 训练图片文件夹 - shuffle_seed: 0 # 随机打散的种子数 - transforms: - - DecodeImage: # 对图像文件进行解码,转成numpy矩阵 +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/ILSVRC2012/ + cls_label_path: ./dataset/ILSVRC2012/train_list.txt + transform_ops: + - DecodeImage: to_rgb: True channel_first: False - - RandCropImage: # 对图像做随机裁剪 + - RandCropImage: size: 224 - - RandFlipImage: # 对图像做随机翻转 + - RandFlipImage: flip_code: 1 - - NormalizeImage: # 对图像做归一化 - scale: 1./255. + - NormalizeImage: + scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: # 将图像从HWC格式转成CHW格式 - mix: - - MixupOperator: # mixup数据增广,在全局配置use_mix=True时生效 - alpha: 0.2 ``` -PaddleClas中也包含了`AutoAugment`, `RandAugment`等数据增广方法,也可以通过在配置文件中配置,从而添加到训练过程的数据预处理中。每个数据转换的方法均以类实现,方便迁移和复用,更多的数据处理具体实现过程可以参考:`ppcls/data/imaug/operators.py`。 +PaddleClas中也包含了`AutoAugment`, `RandAugment`等数据增广方法,也可以通过在配置文件中配置,从而添加到训练过程的数据预处理中。每个数据转换的方法均以类实现,方便迁移和复用,更多的数据处理具体实现过程可以参考`ppcls/data/preprocess/ops/`下的代码。 -对于组成一个batch的数据,也可以使用mixup或者cutmix等方法进行数据增广。PaddleClas中集成了`MixupOperator`, `CutmixOperator`, `FmixOperator`等基于batch的数据增广方法,可以在配置文件中配置mix参数进行配置,更加具体的实现可以参考`ppcls/data/imaug/batch_operators.py`。 +对于组成一个batch的数据,也可以使用mixup或者cutmix等方法进行数据增广。PaddleClas中集成了`MixupOperator`, `CutmixOperator`, `FmixOperator`等基于batch的数据增广方法,可以在配置文件中配置mix参数进行配置,更加具体的实现可以参考`ppcls/data/preprocess/batch_ops/batch_operators.py`。 图像分类中,数据后处理主要为`argmax`操作,在此不再赘述。 @@ -87,69 +83,47 @@ PaddleClas中也包含了`AutoAugment`, `RandAugment`等数据增广方法,也 在配置文件中,模型结构定义如下 ```yaml -ARCHITECTURE: - name: "EfficientNetB0" - params: # 模型需要传入的额外参数,如果没有可不填 - padding_type : "SAME" - override_params: - drop_connect_rate: 0.1 +Arch: + name: ResNet50 + pretrained: False + use_ssld: False ``` +`Arch.name`表示模型名称,`Arch.pretrained`表示是否添加预训练模型。所有的模型名称均在`ppcls/arch/backbone/__init__.py`中定义。 -`ARCHITECTURE.name`表示模型名称,`ARCHITECTURE.params`表示需要额外传入的参数,默认为空。所有的模型名称均在`/ppcls/modeling/architectures/__init__.py`中定义。 - -对应的,在`tools/program.py`中,通过`create_model`方法创建模型对象。 +对应的,在`ppcls/arch/__init__.py`中,通过`build_model`方法创建模型对象。 ```python -def create_model(architecture, classes_num): - name = architecture["name"] - params = architecture.get("params", {}) - return architectures.__dict__[name](class_dim=classes_num, **params) +def build_model(config): + config = copy.deepcopy(config) + model_type = config.pop("name") + mod = importlib.import_module(__name__) + arch = getattr(mod, model_type)(**config) + return arch ``` * 损失函数 -PaddleClas中,包含了`CELoss`, `MixCELoss`, `GoogLeNetLoss`, `JSDivLoss`, `MultiLabelLoss`等损失函数,均定义在`ppcls/modeling/loss.py`中。 +PaddleClas中,包含了`CELoss`, `JSDivLoss`, `TripletLoss`, `CenterLoss`等损失函数,均定义在`ppcls/loss`中。 -在`tools/program.py`文件中,使用`create_loss`构建模型的损失函数,不同训练策略中所需要的损失函数与计算方法不同,PaddleClas在构建损失函数过程中,主要考虑了以下几个因素。 +在`ppcls/loss/__init__.py`文件中,使用`CombinedLoss`来构建及合并损失函数,不同训练策略中所需要的损失函数与计算方法不同,PaddleClas在构建损失函数过程中,主要考虑了以下几个因素。 1. 是否使用label smooth 2. 是否使用mixup或者cutmix 3. 是否使用蒸馏方法进行训练 -4. 是否进行多标签训练 +4. 是否是训练metric learning -```python -def create_loss(feeds, - out, - architecture, - classes_num=1000, - epsilon=None, - use_mix=False, - use_distillation=False, - multilabel=False): - if architecture["name"] == "GoogLeNet": - assert len(out) == 3, "GoogLeNet should have 3 outputs" - loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) - return loss(out[0], out[1], out[2], feeds["label"]) - if use_distillation: - assert len(out) == 2, ("distillation output length must be 2, " - "but got {}".format(len(out))) - loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon) - return loss(out[1], out[0]) +用户可以在配置文件中指定损失函数的类型及权重,如在训练中添加TripletLossV2,配置文件如下: - if use_mix: - loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) - feed_y_a = feeds['y_a'] - feed_y_b = feeds['y_b'] - feed_lam = feeds['lam'] - return loss(out, feed_y_a, feed_y_b, feed_lam) - else: - if not multilabel: - loss = CELoss(class_dim=classes_num, epsilon=epsilon) - else: - loss = MultiLabelLoss(class_dim=classes_num, epsilon=epsilon) - return loss(out, feeds["label"]) +```yaml +Loss: + Train: + - CELoss: + weight: 1.0 + - TripletLossV2: + weight: 1.0 + margin: 0.5 ``` * 优化器和学习率衰减、权重衰减策略 @@ -158,48 +132,53 @@ def create_loss(feeds, 权重衰减策略是一种比较常用的正则化方法,主要用于防止模型过拟合。PaddleClas中提供了`L1Decay`和`L2Decay`两种权重衰减策略。 -学习率衰减是图像分类任务中必不可少的精度提升训练方法,PaddleClas目前支持`Cosine`, `Piecewise`, `CosineWarmup`, `ExponentialWarmup`等学习率衰减策略。 +学习率衰减是图像分类任务中必不可少的精度提升训练方法,PaddleClas目前支持`Cosine`, `Piecewise`, `Linear`等学习率衰减策略。 -在配置文件中,优化器和权重衰减策略可以通过以下的字段进行配置。 +在配置文件中,优化器、权重衰减策略、学习率衰减策略可以通过以下的字段进行配置。 ```yaml -OPTIMIZER: - function: 'Momentum' # Momentum优化器 - params: - momentum: 0.9 - regularizer: - function: 'L2' # L1 means L1Decay, L2 means L2Decay - factor: 0.00010 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Piecewise + learning_rate: 0.1 + decay_epochs: [30, 60, 90] + values: [0.1, 0.01, 0.001, 0.0001] + regularizer: + name: 'L2' + coeff: 0.0001 ``` -学习率衰减策略可以通过以下的字段进行配置。 - -```yaml -LEARNING_RATE: - function: 'Piecewise' # Piecewise学习率衰减策略 - params: - lr: 0.1 # 初始学习率 - decay_epochs: [30, 60, 90] # 学习率下降时对应的epoch数量 - gamma: 0.1 # 学习率衰减倍数 -``` - -在`tools/program.py`中使用`create_optimizer`创建优化器和学习率对象。 +在`ppcls/optimizer/__init__.py`中使用`build_optimizer`创建优化器和学习率对象。 ```python -def create_optimizer(config, parameter_list=None): - # create learning_rate instance - lr_config = config['LEARNING_RATE'] - lr_config['params'].update({ - 'epochs': config['epochs'], - 'step_each_epoch': - config['total_images'] // config['TRAIN']['batch_size'], - }) - lr = LearningRateBuilder(**lr_config)() - - # create optimizer instance - opt_config = config['OPTIMIZER'] - opt = OptimizerBuilder(**opt_config) - return opt(lr, parameter_list), lr +def build_optimizer(config, epochs, step_each_epoch, parameters): + config = copy.deepcopy(config) + # step1 build lr + lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch) + logger.debug("build lr ({}) success..".format(lr)) + # step2 build regularization + if 'regularizer' in config and config['regularizer'] is not None: + reg_config = config.pop('regularizer') + reg_name = reg_config.pop('name') + 'Decay' + reg = getattr(paddle.regularizer, reg_name)(**reg_config) + else: + reg = None + logger.debug("build regularizer ({}) success..".format(reg)) + # step3 build optimizer + optim_name = config.pop('name') + if 'clip_norm' in config: + clip_norm = config.pop('clip_norm') + grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm) + else: + grad_clip = None + optim = getattr(optimizer, optim_name)(learning_rate=lr, + weight_decay=reg, + grad_clip=grad_clip, + **config)(parameters=parameters) + logger.debug("build optimizer ({}) success..".format(optim)) + return optim, lr ``` 不同优化器和权重衰减策略均以类的形式实现,具体实现可以参考文件`ppcls/optimizer/optimizer.py`;不同的学习率衰减策略可以参考文件`ppcls/optimizer/learning_rate.py`。 @@ -210,27 +189,22 @@ def create_optimizer(config, parameter_list=None): 模型在训练的时候,可以设置模型保存的间隔,也可以选择每隔若干个epoch对验证集进行评估,从而可以保存在验证集上精度最佳的模型。配置文件中,可以通过下面的字段进行配置。 ```yaml -save_interval: 1 # 模型保存的epoch间隔 -validate: True # 是否进行训练时评估 -valid_interval: 1 # 评估的epoch间隔 +Global: + save_interval: 1 # 模型保存的epoch间隔 + eval_during_train: True # 是否进行训练时评估 + eval_interval: 1 # 评估的epoch间隔 ``` 模型存储是通过 Paddle 框架的 `paddle.save()` 函数实现的,存储的是模型的 persistable 版本,便于继续训练。具体实现如下 ```python -def save_model(net, optimizer, model_path, epoch_id, prefix='ppcls'): - # just save model in trainer_id=0 - if paddle.distributed.get_rank() != 0: - return +ef save_model(program, model_path, epoch_id, prefix='ppcls'): model_path = os.path.join(model_path, str(epoch_id)) _mkdir_if_not_exist(model_path) model_prefix = os.path.join(model_path, prefix) - # save student model during distillation - _save_student_model(net, model_prefix) - - paddle.save(net.state_dict(), model_prefix + ".pdparams") - paddle.save(optimizer.state_dict(), model_prefix + ".pdopt") - logger.info("Already save model in {}".format(model_path)) + paddle.static.save(program, model_prefix) + logger.info( + logger.coloring("Already save model in {}".format(model_path), "HEADER")) ``` 在保存的时候有两点需要注意: diff --git a/docs/zh_CN/tutorials/quick_start_new_user.md b/docs/zh_CN/tutorials/quick_start_new_user.md index 70e726752..4f1894ed6 100644 --- a/docs/zh_CN/tutorials/quick_start_new_user.md +++ b/docs/zh_CN/tutorials/quick_start_new_user.md @@ -75,20 +75,6 @@ cd ../../ ### 预训练模型下载 -```shell -# 创建文件夹pretrained文件夹并进入 -mkdir pretrained && cd pretrained -# 下载预训练模型 -# 下载ResNet50_vd模型 -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams -# 下载ShuffleNetV2_x0_25模型 -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams -# 回到PaddleClas主目录 -cd .. -``` - -Windows操作如上提示,在PaddleClas根目录下创建相应文件夹,并下载好预训练模型后,放到此文件夹中。 - ### 训练模型 #### 使用CPU进行模型训练 @@ -99,20 +85,19 @@ Windows操作如上提示,在PaddleClas根目录下创建相应文件夹,并 ```shell #windows在cmd中进入PaddleClas根目录,执行此命令 -python tools/train.py -c ./configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml +python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml ``` - `-c` 参数是指定训练的配置文件路径,训练的具体超参数可查看`yaml`文件 -- `yaml`文`use_gpu` 参数设置为`False`,即使用CPU进行训练(若不设置,此参数默认为`True`) +- `yaml`文`Global.device` 参数设置为`cpu`,即使用CPU进行训练(若不设置,此参数默认为`True`) - `yaml`文件中`epochs`参数设置为20,说明对整个数据集进行20个epoch迭代,预计训练20分钟左右(不同CPU,训练时间略有不同),此时训练模型不充分。若提高训练模型精度,请将此参数设大,如**40**,训练时间也会相应延长 ##### 使用预训练模型 ```shell -python tools/train.py -c ./configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml -o pretrained_model="pretrained/ShuffleNetV2_x0_25_pretrained" -``` +python tools/train.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml -o Arch.pretrained=True -- `-o` 参数加入预训练模型地址,注意:预训练模型路径不要加上:`.pdparams` +- `-o` 参数可以选择为True或False,也可以是预训练模型存放路径,当选择为True时,预训练权重会自动下载到本地。注意:若为预训练模型路径,则不要加上:`.pdparams` 可以使用将使用与不使用预训练模型训练进行对比,观察loss的下降情况。 @@ -137,7 +122,7 @@ python tools/train.py -c ./configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml ##### 不使用预训练模型 ```shell -python tools/train.py -c ./configs/quick_start/ResNet50_vd.yaml +python3 tools/train.py -c ./ppcls/configs/quick_start/ResNet50_vd.yaml ``` 训练完成后,验证集的`Top1 Acc`曲线如下所示,最高准确率为0.2735。训练精度曲线下图所示 @@ -149,13 +134,12 @@ python tools/train.py -c ./configs/quick_start/ResNet50_vd.yaml 基于ImageNet1k分类预训练模型进行微调,训练脚本如下所示 ```shell -python tools/train.py -c ./configs/quick_start/ResNet50_vd_finetune.yaml +python3 tools/train.py -c ./ppcls/configs/quick_start/ResNet50_vd.yaml -o Arch.pretrained=True ``` **注**: - 此训练脚本使用GPU,如使用CPU可按照上文中[使用CPU进行模型训练](#使用CPU进行模型训练)所示,进行修改 -- 与[不使用预训练模型](#不使用预训练模型)的`yaml`文件的主要不同,此`ymal`文件中加入 `pretrained_model` 参数,此参数指明预训练模型的位置 验证集的`Top1 Acc`曲线如下所示,最高准确率为0.9402,加载预训练模型之后,flowers102数据集精度大幅提升,绝对精度涨幅超过65%。 @@ -167,35 +151,16 @@ python tools/train.py -c ./configs/quick_start/ResNet50_vd_finetune.yaml ```shell cd $path_to_PaddleClas -python tools/infer/infer.py --model ShuffleNetV2_x0_25 -i dataset/flowers102/jpg/image_00001.jpg --pretrained_model output/ShuffleNetV2_x0_25/best_model/ppcls --class_num 102 --use_gpu False +python3 tools/infer.py -c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml -o Infer.infer_imgs=dataset/flowers102/jpg/image_00001.jpg -o Global.pretrained_model=output/ShuffleNetV2_x0_25/best_model ``` -其中主要参数如下: - -- `--model`:训练时使用擦网络模型,如 ShuffleNetV2_x0_25、ResNet50_vd,具体可查看训练时`yaml`文件中**ARCHITECTURE**下 **name**参数的值 -- `-i`:图像文件路径或者图像所在目录 -- `--pretrained_model`: 存放的模型权重位置。上述CPU训练过程中,最优模型存放位置如下:`output/ShuffleNetV2_x0_25/best_model/ppcls.pdparams`,此时此参数应如下填写:`output/ShuffleNetV2_x0_25/best_model/ppcls`,去掉`.pdparams` -- `--class_num`:为图像类别数,`flowers102`数据集为102类。若用其他数据集,改成相应类别数即可 -- `--use_gpu`:是否使用GPU - `-i`输入为单张图像路径,运行成功后,示例结果如下: -`File:image_00001.jpg, Top-1 result: class id(s): [72], score(s): [0.03]` +`[{'class_ids': [76, 65, 34, 9, 69], 'scores': [0.91762, 0.01801, 0.00833, 0.0071, 0.00669], 'file_name': 'dataset/flowers102/jpg/image_00001.jpg', 'label_names': []}]` `-i`输入为图像集所在目录,运行成功后,示例结果如下: ```txt -File:image_02993.jpg, Top-1 result: class id(s): [77], score(s): [0.02] -File:image_00448.jpg, Top-1 result: class id(s): [77], score(s): [0.02] -File:image_08001.jpg, Top-1 result: class id(s): [77], score(s): [0.01] -File:image_00804.jpg, Top-1 result: class id(s): [100], score(s): [0.02] -File:image_01842.jpg, Top-1 result: class id(s): [100], score(s): [0.02] -File:image_02790.jpg, Top-1 result: class id(s): [70], score(s): [0.05] -File:image_03412.jpg, Top-1 result: class id(s): [100], score(s): [0.02] -File:image_05196.jpg, Top-1 result: class id(s): [77], score(s): [0.02] -File:image_06860.jpg, Top-1 result: class id(s): [70], score(s): [0.03] -File:image_05312.jpg, Top-1 result: class id(s): [77], score(s): [0.02] -File:image_05930.jpg, Top-1 result: class id(s): [100], score(s): [0.02] -File:image_05711.jpg, Top-1 result: class id(s): [77], score(s): [0.01] -File:image_01180.jpg, Top-1 result: class id(s): [70], score(s): [0.03] +[{'class_ids': [76, 65, 34, 9, 69], 'scores': [0.91762, 0.01801, 0.00833, 0.0071, 0.00669], 'file_name': 'dataset/flowers102/jpg/image_00001.jpg', 'label_names': []}, {'class_ids': [76, 69, 34, 28, 9], 'scores': [0.77122, 0.06295, 0.02537, 0.02531, 0.0251], 'file_name': 'dataset/flowers102/jpg/image_00002.jpg', 'label_names': []}, {'class_ids': [99, 76, 81, 85, 16], 'scores': [0.26374, 0.20423, 0.07818, 0.06042, 0.05499], 'file_name': 'dataset/flowers102/jpg/image_00003.jpg', 'label_names': []}, {'class_ids': [9, 37, 34, 24, 76], 'scores': [0.17784, 0.16651, 0.14539, 0.12096, 0.04816], 'file_name': 'dataset/flowers102/jpg/image_00004.jpg', 'label_names': []}, {'class_ids': [76, 66, 91, 16, 13], 'scores': [0.95494, 0.00688, 0.00596, 0.00352, 0.00308], 'file_name': 'dataset/flowers102/jpg/image_00005.jpg', 'label_names': []}, {'class_ids': [76, 66, 34, 8, 43], 'scores': [0.44425, 0.07487, 0.05609, 0.05609, 0.03667], 'file_name': 'dataset/flowers102/jpg/image_00006.jpg', 'label_names': []}, {'class_ids': [86, 93, 81, 22, 21], 'scores': [0.44714, 0.13582, 0.07997, 0.0514, 0.03497], 'file_name': 'dataset/flowers102/jpg/image_00007.jpg', 'label_names': []}, {'class_ids': [13, 76, 81, 18, 97], 'scores': [0.26771, 0.1734, 0.06576, 0.0451, 0.03986], 'file_name': 'dataset/flowers102/jpg/image_00008.jpg', 'label_names': []}, {'class_ids': [34, 76, 8, 5, 9], 'scores': [0.67224, 0.31896, 0.00241, 0.00227, 0.00102], 'file_name': 'dataset/flowers102/jpg/image_00009.jpg', 'label_names': []}, {'class_ids': [76, 34, 69, 65, 66], 'scores': [0.95185, 0.01101, 0.00875, 0.00452, 0.00406], 'file_name': 'dataset/flowers102/jpg/image_00010.jpg', 'label_names': []}] ``` +其中,列表的长度为batch_size的大小。 diff --git a/docs/zh_CN/tutorials/quick_start_professional.md b/docs/zh_CN/tutorials/quick_start_professional.md index c6a56395a..3fddab306 100644 --- a/docs/zh_CN/tutorials/quick_start_professional.md +++ b/docs/zh_CN/tutorials/quick_start_professional.md @@ -25,36 +25,6 @@ tar -xf CIFAR100.tar cd ../ ``` -#### 1.1.2 准备NUS-WIDE-SCENE - -* 创建并进入`dataset/NUS-WIDE-SCENE`目录,下载并解压NUS-WIDE-SCENE数据集。 - -```shell -mkdir dataset/NUS-WIDE-SCENE -cd dataset/NUS-WIDE-SCENE -wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar -tar -xf NUS-SCENE-dataset.tar -``` - -* 返回`PaddleClas`根目录 - -``` -cd ../../ -``` - -### 1.2 模型准备 - -通过下面的命令下载所需要的预训练模型。 - -```bash -mkdir pretrained -cd pretrained -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams -cd ../ -``` - ## 二、模型训练 @@ -69,8 +39,8 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Global.output_dir="output_CIFAR" ``` @@ -86,8 +56,9 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/ResNet50_vd_CIFAR100_finetune.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Global.output_dir="output_CIFAR" \ + -o Arch.pretrained=True ``` 验证集最高准确率为0.718左右,加载预训练模型之后,CIFAR100数据集精度大幅提升,绝对精度涨幅30\%。 @@ -99,8 +70,10 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/ResNet50_vd_ssld_CIFAR100_finetune.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Global.output_dir="output_CIFAR" \ + -o Arch.pretrained=True \ + -o Arch.use_ssld=True ``` 最终CIFAR100验证集上精度指标为0.73,相对于79.12\%预训练模型的微调结构,新数据集指标可以再次提升1.2\%。 @@ -112,31 +85,14 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml \ + -o Global.output_dir="output_CIFAR" \ + -o Arch.pretrained=True ``` 验证集最高准确率为0.601左右, 较ResNet50_vd低近12%。 -### 2.2 多标签训练 - -* 基于ImageNet1k分类预训练模型进行微调NUS-WIDE-SCENE数据集,该是数据集NUS-WIDE的一个子集,类别数目为33类,图片总数是17463张,训练脚本如下所示。 - -```shell -export CUDA_VISIBLE_DEVICES=0,1,2,3 -python3 -m paddle.distributed.launch \ - --gpus="0,1,2,3" \ - tools/train.py \ - -c ./configs/quick_start/ResNet50_vd_multilabel.yaml \ - -o model_save_dir="output_NUS-WIDE-SCENE" -``` - -训练10epoch之后,验证集最好的准确率应该在0.95左右。 - -* 零基础训练(不加载预训练模型)只需要将配置文件中的`pretrained_model`置为`""`即可。 - - ## 三、数据增广 PaddleClas包含了很多数据增广的方法,如Mixup、Cutout、RandomErasing等,具体的方法可以参考[数据增广的章节](../advanced_tutorials/image_augmentation/ImageAugment.md)。 @@ -150,8 +106,8 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml \ + -o Global.output_dir="output_CIFAR" ``` @@ -161,7 +117,7 @@ python3 -m paddle.distributed.launch \ * **注意** - * 其他数据增广的配置文件可以参考`configs/DataAugment`中的配置文件。 + * 其他数据增广的配置文件可以参考`ppcls/configs/DataAugment`中的配置文件。 * 训练CIFAR100的迭代轮数较少,因此进行训练时,验证集的精度指标可能会有1\%左右的波动。 @@ -172,18 +128,42 @@ python3 -m paddle.distributed.launch \ PaddleClas包含了自研的SSLD知识蒸馏方案,具体的内容可以参考[知识蒸馏章节](../advanced_tutorials/distillation/distillation.md)本小节将尝试使用知识蒸馏技术对MobileNetV3_large_x1_0模型进行训练,使用`2.1.2小节`训练得到的ResNet50_vd模型作为蒸馏所用的教师模型,首先将`2.1.2小节`训练得到的ResNet50_vd模型保存到指定目录,脚本如下。 ```shell -cp -r output_CIFAR/ResNet50_vd/best_model/ ./pretrained/CIFAR100_R50_vd_final/ +mkdir pretrained +cp -r output_CIFAR/ResNet50_vd/best_model.pdparams ./pretrained/ ``` -配置文件中数据数量、模型结构、预训练地址以及训练的数据配置如下: +配置文件中模型名字、教师模型哈学生模型的配置、预训练地址配置以及freeze_params配置如下,其中freeze_params_list中的两个值分别代表教师模型和学生模型是否冻结参数训练。 ```yaml -total_images: 50000 -ARCHITECTURE: - name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0' -pretrained_model: - - "./pretrained/CIFAR100_R50_vd_final/ppcls" - - "./pretrained/MobileNetV3_large_x1_0_pretrained/” +Arch: + name: "DistillationModel" + # if not null, its lengths should be same as models + pretrained_list: + # if not null, its lengths should be same as models + freeze_params_list: + - True + - False + models: + - Teacher: + name: ResNet50_vd + pretrained: "./pretrained/best_model" + - Student: + name: MobileNetV3_large_x1_0 + pretrained: True +``` + +Loss配置如下,其中训练Loss是学生模型的输出和教师模型的输出的交叉熵、验证Loss是学生模型的输出和真实标签的交叉熵。 +```yaml +Loss: + Train: + - DistillationCELoss: + weight: 1.0 + model_name_pairs: + - ["Student", "Teacher"] + Eval: + - DistillationGTCELoss: + weight: 1.0 + model_names: ["Student"] ``` 最终的训练脚本如下所示。 @@ -193,8 +173,8 @@ export CUDA_VISIBLE_DEVICES=0,1,2,3 python3 -m paddle.distributed.launch \ --gpus="0,1,2,3" \ tools/train.py \ - -c ./configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml \ - -o model_save_dir="output_CIFAR" + -c ./ppcls/configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml \ + -o Global.output_dir="output_CIFAR" ``` @@ -217,20 +197,19 @@ python3 -m paddle.distributed.launch \ ```bash python3 tools/eval.py \ - -c ./configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ - -o pretrained_model="./output_CIFAR/ResNet50_vd/best_model/ppcls" + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Global.pretrained_model="output_CIFAR/ResNet50_vd/best_model" ``` #### 5.1.2 单标签分类模型预测 -模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: +模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测: ```python -python3 tools/infer/infer.py \ - -i "./dataset/CIFAR100/test/0/0001.png" \ - --model ResNet50_vd \ - --pretrained_model "./output_CIFAR/ResNet50_vd/best_model/ppcls" \ - --use_gpu True +python3 tools/infer.py \ + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Infer.infer_imgs=./dataset/CIFAR100/test/0/0001.png \ + -o Global.pretrained_model=output_CIFAR/ResNet50_vd/best_model ``` @@ -241,53 +220,41 @@ python3 tools/infer/infer.py \ ```bash python3 tools/export_model.py \ - --model ResNet50_vd \ - --pretrained_model ./output_CIFAR/ResNet50_vd/best_model/ppcls \ - --output_path ./inference \ - --class_dim 100 \ - --img_size 32 + -c ./ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml \ + -o Global.pretrained_model=output_CIFAR/ResNet50_vd/best_model ``` -其中,参数`--model`用于指定模型名称,`--pretrained_model`用于指定模型文件路径,`--output_path`用于指定转换后模型的存储路径。 +* 默认会在`inference`文件夹下生成`inference.pdiparams`、`inference.pdmodel`和`inference.pdiparams.info`文件。 -* **注意**: - * `--output_path`表示输出的inference模型文件夹路径,若`--output_path=./inference`,则会在`inference`文件夹下生成`inference.pdiparams`、`inference.pdmodel`和`inference.pdiparams.info`文件。 +使用预测引擎进行推理: - * 可以通过设置参数`--img_size`指定模型输入图像的`shape`,默认为`224`,表示图像尺寸为`224*224`,请根据实际情况修改。 - -上述命令将生成模型结构文件(`inference.pdmodel`)和模型权重文件(`inference.pdiparams`),然后可以使用预测引擎进行推理: +进入deploy目录下: ```bash -python3 tools/infer/predict.py \ - --image_file "./dataset/CIFAR100/test/0/0001.png" \ - --model_file "./inference/inference.pdmodel" \ - --params_file "./inference/inference.pdiparams" \ - --use_gpu=True \ - --use_tensorrt=False +cd deploy +``` +更改inference_cls.yaml文件,由于训练CIFAR100采用的分辨率是32x32,所以需要改变相关的分辨率,最终配置文件中的图像预处理如下: + +```yaml +PreProcess: + transform_ops: + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 0.00392157 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: ``` -### 5.2 多标签分类模型评估与预测 - -#### 5.2.1 多标签分类模型评估 - -训练好模型之后,可以通过以下命令实现对模型精度的评估。 +执行命令进行预测,由于默认class_id_map_file是ImageNet数据集的映射文件,所以此处需要置None。 ```bash -python3 tools/eval.py \ - -c ./configs/quick_start/ResNet50_vd_multilabel.yaml \ - -o pretrained_model="./output_NUS-WIDE-SCENE/ResNet50_vd/best_model/ppcls" -``` - -评估指标采用mAP,验证集的mAP应该在0.57左右。 - -#### 5.2.2 多标签分类模型预测 - -```bash -python3 tools/infer/infer.py \ - -i "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/0199_434752251.jpg" \ - --model ResNet50_vd \ - --pretrained_model "./output_NUS-WIDE-SCENE/ResNet50_vd/best_model/ppcls" \ - --use_gpu True \ - --multilabel True \ - --class_num 33 +python3 python/predict_cls.py \ + -c configs/inference_cls.yaml \ + -o Global.infer_imgs=../dataset/CIFAR100/test/0/0001.png \ + -o PostProcess.class_id_map_file=None ``` diff --git a/ppcls/configs/AlexNet/AlexNet.yaml b/ppcls/configs/AlexNet/AlexNet.yaml deleted file mode 100644 index d1bf3f69b..000000000 --- a/ppcls/configs/AlexNet/AlexNet.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "AlexNet" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.01 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - diff --git a/ppcls/configs/DPN/DPN107.yaml b/ppcls/configs/DPN/DPN107.yaml deleted file mode 100644 index f7e9dcaab..000000000 --- a/ppcls/configs/DPN/DPN107.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DPN107' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DPN/DPN131.yaml b/ppcls/configs/DPN/DPN131.yaml deleted file mode 100644 index b07e57471..000000000 --- a/ppcls/configs/DPN/DPN131.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DPN131' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DPN/DPN68.yaml b/ppcls/configs/DPN/DPN68.yaml deleted file mode 100644 index fc89a95ad..000000000 --- a/ppcls/configs/DPN/DPN68.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DPN68' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DPN/DPN92.yaml b/ppcls/configs/DPN/DPN92.yaml deleted file mode 100644 index ff75eb546..000000000 --- a/ppcls/configs/DPN/DPN92.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DPN92' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DPN/DPN98.yaml b/ppcls/configs/DPN/DPN98.yaml deleted file mode 100644 index 9fe706e75..000000000 --- a/ppcls/configs/DPN/DPN98.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DPN98' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DarkNet/DarkNet53.yaml b/ppcls/configs/DarkNet/DarkNet53.yaml deleted file mode 100644 index cd6b82af3..000000000 --- a/ppcls/configs/DarkNet/DarkNet53.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "DarkNet53" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 256, 256] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 256 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 256 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/DeiT/DeiT_base_distilled_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_base_distilled_patch16_224.yaml deleted file mode 100644 index e74df247f..000000000 --- a/ppcls/configs/DeiT/DeiT_base_distilled_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_base_distilled_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_base_distilled_patch16_384.yaml b/ppcls/configs/DeiT/DeiT_base_distilled_patch16_384.yaml deleted file mode 100644 index 75697e8aa..000000000 --- a/ppcls/configs/DeiT/DeiT_base_distilled_patch16_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_base_distilled_patch16_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 426 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_base_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_base_patch16_224.yaml deleted file mode 100644 index 267b0a504..000000000 --- a/ppcls/configs/DeiT/DeiT_base_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_base_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_base_patch16_384.yaml b/ppcls/configs/DeiT/DeiT_base_patch16_384.yaml deleted file mode 100644 index f8dcc3cf5..000000000 --- a/ppcls/configs/DeiT/DeiT_base_patch16_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_base_patch16_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 426 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_small_distilled_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_small_distilled_patch16_224.yaml deleted file mode 100644 index 992dab9a9..000000000 --- a/ppcls/configs/DeiT/DeiT_small_distilled_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_small_distilled_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_small_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_small_patch16_224.yaml deleted file mode 100644 index ba7737429..000000000 --- a/ppcls/configs/DeiT/DeiT_small_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_small_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_tiny_distilled_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_tiny_distilled_patch16_224.yaml deleted file mode 100644 index 5ddfbd596..000000000 --- a/ppcls/configs/DeiT/DeiT_tiny_distilled_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_tiny_distilled_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DeiT/DeiT_tiny_patch16_224.yaml b/ppcls/configs/DeiT/DeiT_tiny_patch16_224.yaml deleted file mode 100644 index 1ce0b9712..000000000 --- a/ppcls/configs/DeiT/DeiT_tiny_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DeiT_tiny_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DenseNet/DenseNet121.yaml b/ppcls/configs/DenseNet/DenseNet121.yaml deleted file mode 100644 index 59b5138c2..000000000 --- a/ppcls/configs/DenseNet/DenseNet121.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DenseNet121' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DenseNet/DenseNet161.yaml b/ppcls/configs/DenseNet/DenseNet161.yaml deleted file mode 100644 index f96032c06..000000000 --- a/ppcls/configs/DenseNet/DenseNet161.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DenseNet161' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DenseNet/DenseNet169.yaml b/ppcls/configs/DenseNet/DenseNet169.yaml deleted file mode 100644 index 2b49d97fc..000000000 --- a/ppcls/configs/DenseNet/DenseNet169.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DenseNet169' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DenseNet/DenseNet201.yaml b/ppcls/configs/DenseNet/DenseNet201.yaml deleted file mode 100644 index 4e06bdca9..000000000 --- a/ppcls/configs/DenseNet/DenseNet201.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DenseNet201' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/DenseNet/DenseNet264.yaml b/ppcls/configs/DenseNet/DenseNet264.yaml deleted file mode 100644 index b1ca63eb5..000000000 --- a/ppcls/configs/DenseNet/DenseNet264.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'DenseNet264' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/EfficientNet/EfficientNetB0.yaml b/ppcls/configs/EfficientNet/EfficientNetB0.yaml deleted file mode 100644 index 97acaedca..000000000 --- a/ppcls/configs/EfficientNet/EfficientNetB0.yaml +++ /dev/null @@ -1,86 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "EfficientNetB0" - params: - padding_type : "SAME" - override_params: - drop_connect_rate: 0.1 - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] -use_ema: True -ema_decay: 0.9999 -use_aa: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'ExponentialWarmup' - params: - lr: 0.032 - -OPTIMIZER: - function: 'RMSProp' - params: - momentum: 0.9 - rho: 0.9 - epsilon: 0.001 - regularizer: - function: 'L2' - factor: 0.00001 - -TRAIN: - batch_size: 512 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - interpolation: 2 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 128 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - interpolation: 2 - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/GhostNet/GhostNet_x0_5.yaml b/ppcls/configs/GhostNet/GhostNet_x0_5.yaml deleted file mode 100644 index d3bbcc4c4..000000000 --- a/ppcls/configs/GhostNet/GhostNet_x0_5.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'GhostNet_x0_5' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.8 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0000400 - -TRAIN: - batch_size: 2048 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/GhostNet/GhostNet_x1_0.yaml b/ppcls/configs/GhostNet/GhostNet_x1_0.yaml deleted file mode 100644 index 76f565f1c..000000000 --- a/ppcls/configs/GhostNet/GhostNet_x1_0.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'GhostNet_x1_0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.4 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0000400 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/GhostNet/GhostNet_x1_3.yaml b/ppcls/configs/GhostNet/GhostNet_x1_3.yaml deleted file mode 100644 index 11118b9fb..000000000 --- a/ppcls/configs/GhostNet/GhostNet_x1_3.yaml +++ /dev/null @@ -1,73 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'GhostNet_x1_3' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.4 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0000400 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W18_C.yaml b/ppcls/configs/HRNet/HRNet_W18_C.yaml deleted file mode 100644 index cf0656cea..000000000 --- a/ppcls/configs/HRNet/HRNet_W18_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W18_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W30_C.yaml b/ppcls/configs/HRNet/HRNet_W30_C.yaml deleted file mode 100644 index 980b9c45e..000000000 --- a/ppcls/configs/HRNet/HRNet_W30_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W30_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W32_C.yaml b/ppcls/configs/HRNet/HRNet_W32_C.yaml deleted file mode 100644 index b2368eb32..000000000 --- a/ppcls/configs/HRNet/HRNet_W32_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W32_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W40_C.yaml b/ppcls/configs/HRNet/HRNet_W40_C.yaml deleted file mode 100644 index 86f7ff2b4..000000000 --- a/ppcls/configs/HRNet/HRNet_W40_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W40_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W44_C.yaml b/ppcls/configs/HRNet/HRNet_W44_C.yaml deleted file mode 100644 index 2b1649e89..000000000 --- a/ppcls/configs/HRNet/HRNet_W44_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W44_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W48_C.yaml b/ppcls/configs/HRNet/HRNet_W48_C.yaml deleted file mode 100644 index ba3e32e5b..000000000 --- a/ppcls/configs/HRNet/HRNet_W48_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W48_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/HRNet/HRNet_W64_C.yaml b/ppcls/configs/HRNet/HRNet_W64_C.yaml deleted file mode 100644 index d8234bb04..000000000 --- a/ppcls/configs/HRNet/HRNet_W64_C.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'HRNet_W64_C' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Inception/GoogLeNet.yaml b/ppcls/configs/Inception/GoogLeNet.yaml deleted file mode 100644 index 9fe093e22..000000000 --- a/ppcls/configs/Inception/GoogLeNet.yaml +++ /dev/null @@ -1,69 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "GoogLeNet" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Inception/InceptionV3.yaml b/ppcls/configs/Inception/InceptionV3.yaml deleted file mode 100644 index 3f3e96c71..000000000 --- a/ppcls/configs/Inception/InceptionV3.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'InceptionV3' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - - - -VALID: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Inception/InceptionV4.yaml b/ppcls/configs/Inception/InceptionV4.yaml deleted file mode 100644 index 0f5d1cd45..000000000 --- a/ppcls/configs/Inception/InceptionV4.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'InceptionV4' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - - - -VALID: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/MixNet/MixNet_L.yaml b/ppcls/configs/MixNet/MixNet_L.yaml deleted file mode 100644 index 9ba412958..000000000 --- a/ppcls/configs/MixNet/MixNet_L.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'MixNet_L' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/MixNet/MixNet_M.yaml b/ppcls/configs/MixNet/MixNet_M.yaml deleted file mode 100644 index 359db3214..000000000 --- a/ppcls/configs/MixNet/MixNet_M.yaml +++ /dev/null @@ -1,75 +0,0 @@ -#just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'MixNet_M' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/MixNet/MixNet_S.yaml b/ppcls/configs/MixNet/MixNet_S.yaml deleted file mode 100644 index 9c961a0d7..000000000 --- a/ppcls/configs/MixNet/MixNet_S.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon. -mode: 'train' -ARCHITECTURE: - name: 'MixNet_S' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/MobileNetV1/MobileNetV1.yaml b/ppcls/configs/MobileNetV1/MobileNetV1.yaml deleted file mode 100644 index 6c2d3961d..000000000 --- a/ppcls/configs/MobileNetV1/MobileNetV1.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV1" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV1/MobileNetV1_x0_25.yaml b/ppcls/configs/MobileNetV1/MobileNetV1_x0_25.yaml deleted file mode 100644 index 51af8ae86..000000000 --- a/ppcls/configs/MobileNetV1/MobileNetV1_x0_25.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV1_x0_25" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV1/MobileNetV1_x0_5.yaml b/ppcls/configs/MobileNetV1/MobileNetV1_x0_5.yaml deleted file mode 100644 index ddc8f1b27..000000000 --- a/ppcls/configs/MobileNetV1/MobileNetV1_x0_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV1_x0_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV1/MobileNetV1_x0_75.yaml b/ppcls/configs/MobileNetV1/MobileNetV1_x0_75.yaml deleted file mode 100644 index 13affb6e8..000000000 --- a/ppcls/configs/MobileNetV1/MobileNetV1_x0_75.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV1_x0_75" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2.yaml b/ppcls/configs/MobileNetV2/MobileNetV2.yaml deleted file mode 100644 index d7e059794..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2_x0_25.yaml b/ppcls/configs/MobileNetV2/MobileNetV2_x0_25.yaml deleted file mode 100644 index 626978c0c..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2_x0_25.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2_x0_25" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - ratio: [1.0, 1.0] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2_x0_5.yaml b/ppcls/configs/MobileNetV2/MobileNetV2_x0_5.yaml deleted file mode 100644 index d8b8db02d..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2_x0_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2_x0_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - ratio: [1.0, 1.0] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2_x0_75.yaml b/ppcls/configs/MobileNetV2/MobileNetV2_x0_75.yaml deleted file mode 100644 index 2830518ec..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2_x0_75.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2_x0_75" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2_x1_5.yaml b/ppcls/configs/MobileNetV2/MobileNetV2_x1_5.yaml deleted file mode 100644 index d091c3013..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2_x1_5.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2_x1_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV2/MobileNetV2_x2_0.yaml b/ppcls/configs/MobileNetV2/MobileNetV2_x2_0.yaml deleted file mode 100644 index cd5df7d09..000000000 --- a/ppcls/configs/MobileNetV2/MobileNetV2_x2_0.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV2_x2_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_35.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_35.yaml deleted file mode 100644 index 829f5375f..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_35.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_large_x0_35" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 2.6 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 4096 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_5.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_5.yaml deleted file mode 100644 index 9dab3b875..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_large_x0_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 1.3 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 2048 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_75.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_75.yaml deleted file mode 100644 index 124324d60..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_large_x0_75.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_large_x0_75" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 1.3 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 2048 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_0.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_0.yaml deleted file mode 100644 index 9c85f44fa..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_0.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_large_x1_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 1.3 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 2048 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_25.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_25.yaml deleted file mode 100644 index 3f5f48bbc..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_large_x1_25.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_large_x1_25" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.65 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_35.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_35.yaml deleted file mode 100644 index ff5dcd714..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_35.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_small_x0_35" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 2.6 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00001 - -TRAIN: - batch_size: 4096 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_5.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_5.yaml deleted file mode 100644 index af0af7c10..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_small_x0_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 2.6 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00001 - -TRAIN: - batch_size: 4096 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_75.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_75.yaml deleted file mode 100644 index 4eae9a92a..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_small_x0_75.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_small_x0_75" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 2.6 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 4096 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_0.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_0.yaml deleted file mode 100644 index f63ce6d92..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_0.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_small_x1_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 2.6 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 4096 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_25.yaml b/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_25.yaml deleted file mode 100644 index bc7b3193d..000000000 --- a/ppcls/configs/MobileNetV3/MobileNetV3_small_x1_25.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "MobileNetV3_small_x1_25" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -ls_epsilon: 0.1 -validate: True -valid_interval: 1 -epochs: 360 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 1.3 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00002 - -TRAIN: - batch_size: 2048 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ReXNet/ReXNet_1_0.yaml b/ppcls/configs/ReXNet/ReXNet_1_0.yaml deleted file mode 100644 index 9e168f8ac..000000000 --- a/ppcls/configs/ReXNet/ReXNet_1_0.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'ReXNet_1_0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ReXNet/ReXNet_1_3.yaml b/ppcls/configs/ReXNet/ReXNet_1_3.yaml deleted file mode 100644 index 4a03f6784..000000000 --- a/ppcls/configs/ReXNet/ReXNet_1_3.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'ReXNet_1_3' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ReXNet/ReXNet_1_5.yaml b/ppcls/configs/ReXNet/ReXNet_1_5.yaml deleted file mode 100644 index 00923c3fe..000000000 --- a/ppcls/configs/ReXNet/ReXNet_1_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'ReXNet_1_5' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ReXNet/ReXNet_2_0.yaml b/ppcls/configs/ReXNet/ReXNet_2_0.yaml deleted file mode 100644 index 1a6b08bff..000000000 --- a/ppcls/configs/ReXNet/ReXNet_2_0.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'ReXNet_2_0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ReXNet/ReXNet_3_0.yaml b/ppcls/configs/ReXNet/ReXNet_3_0.yaml deleted file mode 100644 index 18dbad1f1..000000000 --- a/ppcls/configs/ReXNet/ReXNet_3_0.yaml +++ /dev/null @@ -1,75 +0,0 @@ -# just for finetune, the config for training on ImageNet is coming soon -mode: 'train' -ARCHITECTURE: - name: 'ReXNet_3_0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RegNet/RegNetX_4GF.yaml b/ppcls/configs/RegNet/RegNetX_4GF.yaml deleted file mode 100644 index fab32313f..000000000 --- a/ppcls/configs/RegNet/RegNetX_4GF.yaml +++ /dev/null @@ -1,73 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RegNetX_4GF' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.4 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000050 - -TRAIN: - batch_size: 512 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_A0.yaml b/ppcls/configs/RepVGG/RepVGG_A0.yaml deleted file mode 100644 index a8ff9972e..000000000 --- a/ppcls/configs/RepVGG/RepVGG_A0.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_A0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_A1.yaml b/ppcls/configs/RepVGG/RepVGG_A1.yaml deleted file mode 100644 index d755da455..000000000 --- a/ppcls/configs/RepVGG/RepVGG_A1.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_A1' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_A2.yaml b/ppcls/configs/RepVGG/RepVGG_A2.yaml deleted file mode 100644 index 44e4e49be..000000000 --- a/ppcls/configs/RepVGG/RepVGG_A2.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_A2' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B0.yaml b/ppcls/configs/RepVGG/RepVGG_B0.yaml deleted file mode 100644 index be47f0d77..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B0.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B0' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B1.yaml b/ppcls/configs/RepVGG/RepVGG_B1.yaml deleted file mode 100644 index 62694e41d..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B1.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B1' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B1g2.yaml b/ppcls/configs/RepVGG/RepVGG_B1g2.yaml deleted file mode 100644 index 3251b0464..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B1g2.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B1g2' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B1g4.yaml b/ppcls/configs/RepVGG/RepVGG_B1g4.yaml deleted file mode 100644 index 5441d4e4b..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B1g4.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B1g4' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B2.yaml b/ppcls/configs/RepVGG/RepVGG_B2.yaml deleted file mode 100644 index 60da46b9e..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B2.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B2' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B2g2.yaml b/ppcls/configs/RepVGG/RepVGG_B2g2.yaml deleted file mode 100644 index 09ff2d5bf..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B2g2.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B2g2' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B2g4.yaml b/ppcls/configs/RepVGG/RepVGG_B2g4.yaml deleted file mode 100644 index 146917a37..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B2g4.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B2g4' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B3.yaml b/ppcls/configs/RepVGG/RepVGG_B3.yaml deleted file mode 100644 index 765b38bea..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B3.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B3' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B3g2.yaml b/ppcls/configs/RepVGG/RepVGG_B3g2.yaml deleted file mode 100644 index 09a8ee573..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B3g2.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B3g2' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/RepVGG/RepVGG_B3g4.yaml b/ppcls/configs/RepVGG/RepVGG_B3g4.yaml deleted file mode 100644 index c5adcfe11..000000000 --- a/ppcls/configs/RepVGG/RepVGG_B3g4.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'RepVGG_B3g4' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Res2Net/Res2Net101_vd_26w_4s.yaml b/ppcls/configs/Res2Net/Res2Net101_vd_26w_4s.yaml deleted file mode 100644 index abc4213ac..000000000 --- a/ppcls/configs/Res2Net/Res2Net101_vd_26w_4s.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Res2Net101_vd_26w_4s' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Res2Net/Res2Net200_vd_26w_4s.yaml b/ppcls/configs/Res2Net/Res2Net200_vd_26w_4s.yaml deleted file mode 100644 index bdc4889b2..000000000 --- a/ppcls/configs/Res2Net/Res2Net200_vd_26w_4s.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Res2Net200_vd_26w_4s' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Res2Net/Res2Net50_14w_8s.yaml b/ppcls/configs/Res2Net/Res2Net50_14w_8s.yaml deleted file mode 100644 index 4f61ab1d5..000000000 --- a/ppcls/configs/Res2Net/Res2Net50_14w_8s.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Res2Net50_14w_8s' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Res2Net/Res2Net50_26w_4s.yaml b/ppcls/configs/Res2Net/Res2Net50_26w_4s.yaml deleted file mode 100644 index 8aeac8e0b..000000000 --- a/ppcls/configs/Res2Net/Res2Net50_26w_4s.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Res2Net50_26w_4s' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Res2Net/Res2Net50_vd_26w_4s.yaml b/ppcls/configs/Res2Net/Res2Net50_vd_26w_4s.yaml deleted file mode 100644 index ef39fa2f3..000000000 --- a/ppcls/configs/Res2Net/Res2Net50_vd_26w_4s.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Res2Net50_vd_26w_4s' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeSt/ResNeSt101.yaml b/ppcls/configs/ResNeSt/ResNeSt101.yaml deleted file mode 100644 index 2f07083ba..000000000 --- a/ppcls/configs/ResNeSt/ResNeSt101.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeSt101' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 300 -topk: 5 -image_shape: [3, 256, 256] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 256 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - CutmixOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 288 - - CropImage: - size: 256 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeSt/ResNeSt50.yaml b/ppcls/configs/ResNeSt/ResNeSt50.yaml deleted file mode 100644 index e91f99dbf..000000000 --- a/ppcls/configs/ResNeSt/ResNeSt50.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeSt50' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 300 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - CutmixOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml b/ppcls/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml deleted file mode 100644 index 0d4fffe2d..000000000 --- a/ppcls/configs/ResNeSt/ResNeSt50_fast_1s1x64d.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeSt50_fast_1s1x64d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 300 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - AutoAugment: - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - CutmixOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt101_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt101_32x4d.yaml deleted file mode 100644 index 009f14dfa..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt101_32x4d.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt101_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt101_32x4d_fp16.yaml b/ppcls/configs/ResNeXt/ResNeXt101_32x4d_fp16.yaml deleted file mode 100644 index 570d725a1..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt101_32x4d_fp16.yaml +++ /dev/null @@ -1,89 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt101_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [4, 224, 224] - -use_dali: True -use_gpu: True -data_format: "NCHW" -image_channel: &image_channel 4 -image_shape: [*image_channel, 224, 224] - -use_mix: False -ls_epsilon: -1 - -# mixed precision training -AMP: - scale_loss: 128.0 - use_dynamic_loss_scaling: True - use_pure_fp16: &use_pure_fp16 True - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - multi_precision: *use_pure_fp16 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - output_fp16: *use_pure_fp16 - channel_num: *image_channel - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt101_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt101_64x4d.yaml deleted file mode 100644 index 0f2c6251e..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt101_64x4d.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt101_64x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000150 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt101_vd_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt101_vd_32x4d.yaml deleted file mode 100644 index e78a241ee..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt101_vd_32x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt101_vd_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt101_vd_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt101_vd_64x4d.yaml deleted file mode 100644 index 429458056..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt101_vd_64x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt101_vd_64x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt152_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt152_32x4d.yaml deleted file mode 100644 index e656dc77a..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt152_32x4d.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt152_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt152_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt152_64x4d.yaml deleted file mode 100644 index 813201e95..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt152_64x4d.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt152_64x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000180 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt152_vd_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt152_vd_32x4d.yaml deleted file mode 100644 index ed9b6da15..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt152_vd_32x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt152_vd_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt152_vd_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt152_vd_64x4d.yaml deleted file mode 100644 index 1d234f7bf..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt152_vd_64x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt152_vd_64x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt50_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt50_32x4d.yaml deleted file mode 100644 index 312a314f5..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt50_32x4d.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt50_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt/ResNeXt50_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt50_64x4d.yaml deleted file mode 100644 index 66a6216cb..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt50_64x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ResNeXt50_64x4d" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 32 - num_workers: 8 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ResNeXt/ResNeXt50_vd_32x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt50_vd_32x4d.yaml deleted file mode 100644 index 8f7f8a20f..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt50_vd_32x4d.yaml +++ /dev/null @@ -1,80 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ResNeXt50_vd_32x4d" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ResNeXt/ResNeXt50_vd_64x4d.yaml b/ppcls/configs/ResNeXt/ResNeXt50_vd_64x4d.yaml deleted file mode 100644 index 29b1195c0..000000000 --- a/ppcls/configs/ResNeXt/ResNeXt50_vd_64x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNeXt50_vd_64x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNeXt101_wsl/ResNeXt101_32x8d_wsl.yaml b/ppcls/configs/ResNeXt101_wsl/ResNeXt101_32x8d_wsl.yaml deleted file mode 100644 index 69485ba19..000000000 --- a/ppcls/configs/ResNeXt101_wsl/ResNeXt101_32x8d_wsl.yaml +++ /dev/null @@ -1,35 +0,0 @@ -mode: 'valid' -ARCHITECTURE: - name: 'ResNeXt101_32x8d_wsl' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 224 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet101.yaml b/ppcls/configs/ResNet/ResNet101.yaml deleted file mode 100644 index 039c40a66..000000000 --- a/ppcls/configs/ResNet/ResNet101.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet101' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet101_vd.yaml b/ppcls/configs/ResNet/ResNet101_vd.yaml deleted file mode 100644 index 30c7ad147..000000000 --- a/ppcls/configs/ResNet/ResNet101_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet101_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet152.yaml b/ppcls/configs/ResNet/ResNet152.yaml deleted file mode 100644 index 3575fa74f..000000000 --- a/ppcls/configs/ResNet/ResNet152.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet152' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet152_vd.yaml b/ppcls/configs/ResNet/ResNet152_vd.yaml deleted file mode 100644 index d1f2e46a8..000000000 --- a/ppcls/configs/ResNet/ResNet152_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet152_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet18.yaml b/ppcls/configs/ResNet/ResNet18.yaml deleted file mode 100644 index b97183ed8..000000000 --- a/ppcls/configs/ResNet/ResNet18.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet18' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet18_vd.yaml b/ppcls/configs/ResNet/ResNet18_vd.yaml deleted file mode 100644 index edb89ca52..000000000 --- a/ppcls/configs/ResNet/ResNet18_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet18_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet200_vd.yaml b/ppcls/configs/ResNet/ResNet200_vd.yaml deleted file mode 100644 index fa7fb83a5..000000000 --- a/ppcls/configs/ResNet/ResNet200_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet200_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet34.yaml b/ppcls/configs/ResNet/ResNet34.yaml deleted file mode 100644 index 921a1a3c9..000000000 --- a/ppcls/configs/ResNet/ResNet34.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet34' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet34_vd.yaml b/ppcls/configs/ResNet/ResNet34_vd.yaml deleted file mode 100644 index 6423e0c1a..000000000 --- a/ppcls/configs/ResNet/ResNet34_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet34_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet50.yaml b/ppcls/configs/ResNet/ResNet50.yaml deleted file mode 100644 index 9c10e68dd..000000000 --- a/ppcls/configs/ResNet/ResNet50.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet50_fp16.yaml b/ppcls/configs/ResNet/ResNet50_fp16.yaml deleted file mode 100644 index 992020931..000000000 --- a/ppcls/configs/ResNet/ResNet50_fp16.yaml +++ /dev/null @@ -1,89 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -is_distributed: True - -use_dali: True -use_gpu: True -data_format: "NHWC" -image_channel: &image_channel 4 -image_shape: [*image_channel, 224, 224] - -use_mix: False -ls_epsilon: -1 - -# mixed precision training -AMP: - scale_loss: 128.0 - use_dynamic_loss_scaling: True - use_pure_fp16: &use_pure_fp16 True - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - multi_precision: *use_pure_fp16 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - output_fp16: *use_pure_fp16 - channel_num: *image_channel - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet50_vc.yaml b/ppcls/configs/ResNet/ResNet50_vc.yaml deleted file mode 100644 index 4decb128d..000000000 --- a/ppcls/configs/ResNet/ResNet50_vc.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vc' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ResNet/ResNet50_vd.yaml b/ppcls/configs/ResNet/ResNet50_vd.yaml deleted file mode 100644 index 176aa5fa5..000000000 --- a/ppcls/configs/ResNet/ResNet50_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SENet154_vd.yaml b/ppcls/configs/SENet/SENet154_vd.yaml deleted file mode 100644 index f67d83edf..000000000 --- a/ppcls/configs/SENet/SENet154_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SENet154_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNeXt101_32x4d.yaml b/ppcls/configs/SENet/SE_ResNeXt101_32x4d.yaml deleted file mode 100644 index 9b3371f37..000000000 --- a/ppcls/configs/SENet/SE_ResNeXt101_32x4d.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNeXt101_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000015 - -TRAIN: - batch_size: 400 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNeXt101_32x4d_fp16.yaml b/ppcls/configs/SENet/SE_ResNeXt101_32x4d_fp16.yaml deleted file mode 100644 index ecd5d7912..000000000 --- a/ppcls/configs/SENet/SE_ResNeXt101_32x4d_fp16.yaml +++ /dev/null @@ -1,89 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNeXt101_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -is_distributed: False - -use_dali: False -use_gpu: True -data_format: "NCHW" -image_channel: &image_channel 4 -image_shape: [*image_channel, 224, 224] - - -use_mix: False -ls_epsilon: -1 - -AMP: - scale_loss: 128.0 - use_dynamic_loss_scaling: True - use_pure_fp16: &use_pure_fp16 True - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - multi_precision: *use_pure_fp16 - regularizer: - function: 'L2' - factor: 0.000015 - -TRAIN: - batch_size: 96 - num_workers: 0 - file_list: "/home/datasets/ILSVRC2012/train_list.txt" - data_dir: "/home/datasets/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - to_np: False - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - output_fp16: *use_pure_fp16 - channel_num: *image_channel - - ToCHWImage: - -VALID: - batch_size: 16 - num_workers: 0 - file_list: "/home/datasets/ILSVRC2012/val_list.txt" - data_dir: "/home/datasets/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - to_np: False - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNeXt50_32x4d.yaml b/ppcls/configs/SENet/SE_ResNeXt50_32x4d.yaml deleted file mode 100644 index 64dff2ef8..000000000 --- a/ppcls/configs/SENet/SE_ResNeXt50_32x4d.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNeXt50_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000120 - -TRAIN: - batch_size: 400 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNeXt50_vd_32x4d.yaml b/ppcls/configs/SENet/SE_ResNeXt50_vd_32x4d.yaml deleted file mode 100644 index d25616ad6..000000000 --- a/ppcls/configs/SENet/SE_ResNeXt50_vd_32x4d.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNeXt50_vd_32x4d' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNet18_vd.yaml b/ppcls/configs/SENet/SE_ResNet18_vd.yaml deleted file mode 100644 index 51520d678..000000000 --- a/ppcls/configs/SENet/SE_ResNet18_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNet18_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNet34_vd.yaml b/ppcls/configs/SENet/SE_ResNet34_vd.yaml deleted file mode 100644 index f0ec42701..000000000 --- a/ppcls/configs/SENet/SE_ResNet34_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNet34_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SENet/SE_ResNet50_vd.yaml b/ppcls/configs/SENet/SE_ResNet50_vd.yaml deleted file mode 100644 index b19270c89..000000000 --- a/ppcls/configs/SENet/SE_ResNet50_vd.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SE_ResNet50_vd' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_swish.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_swish.yaml deleted file mode 100644 index e9e9e7fed..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_swish.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_swish" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.5 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_25.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_25.yaml deleted file mode 100644 index d8495dca8..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_25.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x0_25" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.5 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - scale: [0.64, 1.0] - ratio: [0.8, 1.2] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_33.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_33.yaml deleted file mode 100644 index e10e900e3..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_33.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x0_33" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.5 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - scale: [0.64, 1.0] - ratio: [0.8, 1.2] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_5.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_5.yaml deleted file mode 100644 index ba6f5ff4e..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x0_5.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x0_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.5 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00003 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - scale: [0.64, 1.0] - ratio: [0.8, 1.2] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_0.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_0.yaml deleted file mode 100644 index 404550cef..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_0.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x1_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.5 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_5.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_5.yaml deleted file mode 100644 index 7570afc6f..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x1_5.yaml +++ /dev/null @@ -1,75 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x1_5" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.25 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 512 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - ratio: [1.0, 1.0] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/ShuffleNet/ShuffleNetV2_x2_0.yaml b/ppcls/configs/ShuffleNet/ShuffleNetV2_x2_0.yaml deleted file mode 100644 index b54063ae7..000000000 --- a/ppcls/configs/ShuffleNet/ShuffleNetV2_x2_0.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "ShuffleNetV2_x2_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 240 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.25 - warmup_epoch: 5 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00004 - -TRAIN: - batch_size: 512 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/SqueezeNet/SqueezeNet1_0.yaml b/ppcls/configs/SqueezeNet/SqueezeNet1_0.yaml deleted file mode 100644 index 6824a59ac..000000000 --- a/ppcls/configs/SqueezeNet/SqueezeNet1_0.yaml +++ /dev/null @@ -1,71 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "SqueezeNet1_0" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'CosineWarmup' - params: - lr: 0.02 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - diff --git a/ppcls/configs/SqueezeNet/SqueezeNet1_1.yaml b/ppcls/configs/SqueezeNet/SqueezeNet1_1.yaml deleted file mode 100644 index 73a456146..000000000 --- a/ppcls/configs/SqueezeNet/SqueezeNet1_1.yaml +++ /dev/null @@ -1,69 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "SqueezeNet1_1" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.02 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window12_384.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window12_384.yaml deleted file mode 100644 index 815bce71b..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window12_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_base_patch4_window12_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - size: [384, 384] - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window7_224.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window7_224.yaml deleted file mode 100644 index eccc77630..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_base_patch4_window7_224.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_base_patch4_window7_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window12_384.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window12_384.yaml deleted file mode 100644 index 4d05754d1..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window12_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_large_patch4_window12_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 128 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - size: [384, 384] - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window7_224.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window7_224.yaml deleted file mode 100644 index f2481da11..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_large_patch4_window7_224.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_large_patch4_window7_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_small_patch4_window7_224.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_small_patch4_window7_224.yaml deleted file mode 100644 index 4f724b7f0..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_small_patch4_window7_224.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_small_patch4_window7_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml b/ppcls/configs/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml deleted file mode 100644 index 59c9038ed..000000000 --- a/ppcls/configs/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'SwinTransformer_tiny_patch4_window7_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Piecewise' - params: - lr: 0.1 - decay_epochs: [30, 60, 90] - gamma: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VGG/VGG11.yaml b/ppcls/configs/VGG/VGG11.yaml deleted file mode 100644 index ad5c2f6f1..000000000 --- a/ppcls/configs/VGG/VGG11.yaml +++ /dev/null @@ -1,69 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "VGG11" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 90 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.1 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0002 - -TRAIN: - batch_size: 512 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VGG/VGG13.yaml b/ppcls/configs/VGG/VGG13.yaml deleted file mode 100644 index 347cb0b7e..000000000 --- a/ppcls/configs/VGG/VGG13.yaml +++ /dev/null @@ -1,70 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "VGG13" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 90 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0003 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - diff --git a/ppcls/configs/VGG/VGG16.yaml b/ppcls/configs/VGG/VGG16.yaml deleted file mode 100644 index 75431ffc1..000000000 --- a/ppcls/configs/VGG/VGG16.yaml +++ /dev/null @@ -1,70 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "VGG16" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 90 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - diff --git a/ppcls/configs/VGG/VGG19.yaml b/ppcls/configs/VGG/VGG19.yaml deleted file mode 100644 index b591bc08e..000000000 --- a/ppcls/configs/VGG/VGG19.yaml +++ /dev/null @@ -1,70 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: "VGG19" - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 150 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0004 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - diff --git a/ppcls/configs/VisionTransformer/ViT_base_patch16_224.yaml b/ppcls/configs/VisionTransformer/ViT_base_patch16_224.yaml deleted file mode 100644 index 80f1f1ab0..000000000 --- a/ppcls/configs/VisionTransformer/ViT_base_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_base_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.005 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_base_patch16_384.yaml b/ppcls/configs/VisionTransformer/ViT_base_patch16_384.yaml deleted file mode 100644 index 4b8a99822..000000000 --- a/ppcls/configs/VisionTransformer/ViT_base_patch16_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_base_patch16_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.005 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 384 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_base_patch32_384.yaml b/ppcls/configs/VisionTransformer/ViT_base_patch32_384.yaml deleted file mode 100644 index 4eddb0ac9..000000000 --- a/ppcls/configs/VisionTransformer/ViT_base_patch32_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_base_patch32_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.005 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 48 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 384 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: \ No newline at end of file diff --git a/ppcls/configs/VisionTransformer/ViT_huge_patch16_224.yaml b/ppcls/configs/VisionTransformer/ViT_huge_patch16_224.yaml deleted file mode 100644 index f2841a5e2..000000000 --- a/ppcls/configs/VisionTransformer/ViT_huge_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_huge_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_huge_patch32_384.yaml b/ppcls/configs/VisionTransformer/ViT_huge_patch32_384.yaml deleted file mode 100644 index 3859d132d..000000000 --- a/ppcls/configs/VisionTransformer/ViT_huge_patch32_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_huge_patch32_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.001 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 16 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 384 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_large_patch16_224.yaml b/ppcls/configs/VisionTransformer/ViT_large_patch16_224.yaml deleted file mode 100644 index 55a5fdbd6..000000000 --- a/ppcls/configs/VisionTransformer/ViT_large_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_large_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.003 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_large_patch16_384.yaml b/ppcls/configs/VisionTransformer/ViT_large_patch16_384.yaml deleted file mode 100644 index b5e285aca..000000000 --- a/ppcls/configs/VisionTransformer/ViT_large_patch16_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_large_patch16_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.003 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 384 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/VisionTransformer/ViT_large_patch32_384.yaml b/ppcls/configs/VisionTransformer/ViT_large_patch32_384.yaml deleted file mode 100644 index 5a975656f..000000000 --- a/ppcls/configs/VisionTransformer/ViT_large_patch32_384.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_large_patch32_384' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 384, 384] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.003 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 384 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: - -VALID: - batch_size: 32 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 384 - - CropImage: - size: 384 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.5, 0.5, 0.5] - std: [0.5, 0.5, 0.5] - order: '' - - ToCHWImage: \ No newline at end of file diff --git a/ppcls/configs/VisionTransformer/ViT_small_patch16_224.yaml b/ppcls/configs/VisionTransformer/ViT_small_patch16_224.yaml deleted file mode 100644 index 702069ec0..000000000 --- a/ppcls/configs/VisionTransformer/ViT_small_patch16_224.yaml +++ /dev/null @@ -1,72 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ViT_small_patch16_224' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 224, 224] - -use_mix: False -ls_epsilon: -1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.01 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000100 - -TRAIN: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 248 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Xception/Xception41.yaml b/ppcls/configs/Xception/Xception41.yaml deleted file mode 100644 index 4fbf30d53..000000000 --- a/ppcls/configs/Xception/Xception41.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Xception41' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Xception/Xception41_deeplab.yaml b/ppcls/configs/Xception/Xception41_deeplab.yaml deleted file mode 100644 index b94c2d0c7..000000000 --- a/ppcls/configs/Xception/Xception41_deeplab.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Xception41_deeplab' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Xception/Xception65.yaml b/ppcls/configs/Xception/Xception65.yaml deleted file mode 100644 index 6eb627a34..000000000 --- a/ppcls/configs/Xception/Xception65.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Xception65' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - - - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Xception/Xception65_deeplab.yaml b/ppcls/configs/Xception/Xception65_deeplab.yaml deleted file mode 100644 index f112887a0..000000000 --- a/ppcls/configs/Xception/Xception65_deeplab.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Xception65_deeplab' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 120 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.045 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/Xception/Xception71.yaml b/ppcls/configs/Xception/Xception71.yaml deleted file mode 100644 index 60729a2aa..000000000 --- a/ppcls/configs/Xception/Xception71.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'Xception71' - -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 1000 -total_images: 1281167 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 200 -topk: 5 -image_shape: [3, 299, 299] - -use_mix: True -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.0225 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00010 - -TRAIN: - batch_size: 128 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/train_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 299 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - - - -VALID: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/ILSVRC2012/val_list.txt" - data_dir: "./dataset/ILSVRC2012/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 320 - - CropImage: - size: 299 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml b/ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml new file mode 100644 index 000000000..a102a9d0a --- /dev/null +++ b/ppcls/configs/quick_start/MobileNetV3_large_x1_0.yaml @@ -0,0 +1,131 @@ +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + class_num: 102 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 20 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 224, 224] + save_inference_dir: ./inference + +# model architecture +Arch: + name: MobileNetV3_large_x1_0 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 + + +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.00375 + warmup_epoch: 5 + last_epoch: -1 + regularizer: + name: 'L2' + coeff: 0.000001 + + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - RandCropImage: + size: 224 + - RandFlipImage: + flip_code: 1 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + + sampler: + name: DistributedBatchSampler + batch_size: 32 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/val_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/whl/demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml b/ppcls/configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml deleted file mode 100644 index f8dead622..000000000 --- a/ppcls/configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml +++ /dev/null @@ -1,69 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'MobileNetV3_large_x1_0' -pretrained_model: "./pretrained/MobileNetV3_large_x1_0_pretrained" -model_save_dir: "./output/" -use_gpu: True -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.00375 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000001 - -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml b/ppcls/configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml deleted file mode 100644 index c17b1f65c..000000000 --- a/ppcls/configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml +++ /dev/null @@ -1,74 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0' - -pretrained_model: - - "./pretrained/flowers102_R50_vd_final/ppcls" - - "./pretrained/MobileNetV3_large_x1_0_pretrained" -model_save_dir: "./output/" -use_gpu: True -classes_num: 102 -total_images: 7169 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] - -use_distillation: True - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.0125 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00007 - -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_extra_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/ResNet50_vd.yaml b/ppcls/configs/quick_start/ResNet50_vd.yaml index 6ad57067f..f155f0f98 100644 --- a/ppcls/configs/quick_start/ResNet50_vd.yaml +++ b/ppcls/configs/quick_start/ResNet50_vd.yaml @@ -1,40 +1,54 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + class_num: 102 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 20 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 224, 224] + save_inference_dir: ./inference -checkpoints: "" -pretrained_model: "" -use_gpu: True -model_save_dir: "./output/" -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] +# model architecture +Arch: + name: ResNet50_vd + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.0125 -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00001 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.0125 + warmup_epoch: 5 + regularizer: + name: 'L2' + coeff: 0.00001 -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/train_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -43,19 +57,27 @@ TRAIN: - RandFlipImage: flip_code: 1 - NormalizeImage: - scale: 1./255. + scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: + sampler: + name: DistributedBatchSampler + batch_size: 32 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/val_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -68,4 +90,41 @@ VALID: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/whl/demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + class_id_map_file: ppcls/utils/imagenet1k_label_list.txt + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/ResNet50_vd_finetune.yaml b/ppcls/configs/quick_start/ResNet50_vd_finetune.yaml deleted file mode 100644 index 76ea8decf..000000000 --- a/ppcls/configs/quick_start/ResNet50_vd_finetune.yaml +++ /dev/null @@ -1,69 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' -pretrained_model: "./pretrained/ResNet50_vd_pretrained" -model_save_dir: "./output/" -use_gpu: True -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.00375 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000001 - -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/ResNet50_vd_multilabel.yaml b/ppcls/configs/quick_start/ResNet50_vd_multilabel.yaml deleted file mode 100644 index 32fed0b6a..000000000 --- a/ppcls/configs/quick_start/ResNet50_vd_multilabel.yaml +++ /dev/null @@ -1,77 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - -pretrained_model: "./pretrained/ResNet50_vd_pretrained" -model_save_dir: "./output/" -classes_num: 33 -total_images: 17463 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 10 -topk: 1 -image_shape: [3, 224, 224] - -multilabel: True - -use_mix: False -ls_epsilon: 0.1 - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.07 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000070 - -TRAIN: - batch_size: 256 - num_workers: 4 - file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt" - data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 - -VALID: - batch_size: 64 - num_workers: 4 - file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt" - data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: \ No newline at end of file diff --git a/ppcls/configs/quick_start/ResNet50_vd_ssld_finetune.yaml b/ppcls/configs/quick_start/ResNet50_vd_ssld_finetune.yaml deleted file mode 100644 index fda655faa..000000000 --- a/ppcls/configs/quick_start/ResNet50_vd_ssld_finetune.yaml +++ /dev/null @@ -1,71 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - params: - lr_mult_list: [0.5, 0.5, 0.6, 0.6, 0.8] -pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained" -model_save_dir: "./output/" -use_gpu: True -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.00375 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000001 - -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml b/ppcls/configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml deleted file mode 100644 index 7a60a45e5..000000000 --- a/ppcls/configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml +++ /dev/null @@ -1,73 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - params: - lr_mult_list: [0.5, 0.5, 0.6, 0.6, 0.8] -pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained" -model_save_dir: "./output/" -use_gpu: True -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.00375 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.000001 - -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 224 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - RandomErasing: - EPSILON: 0.5 - -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 256 - - CropImage: - size: 224 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/HRNet_W18_C_finetune_kunlun.yaml b/ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml similarity index 100% rename from ppcls/configs/quick_start/HRNet_W18_C_finetune_kunlun.yaml rename to ppcls/configs/quick_start/kunlun/HRNet_W18_C_finetune_kunlun.yaml diff --git a/ppcls/configs/quick_start/ResNet50_vd_finetune_kunlun.yaml b/ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml similarity index 100% rename from ppcls/configs/quick_start/ResNet50_vd_finetune_kunlun.yaml rename to ppcls/configs/quick_start/kunlun/ResNet50_vd_finetune_kunlun.yaml diff --git a/ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml b/ppcls/configs/quick_start/kunlun/VGG16_finetune_kunlun.yaml similarity index 100% rename from ppcls/configs/quick_start/VGG16_finetune_kunlun.yaml rename to ppcls/configs/quick_start/kunlun/VGG16_finetune_kunlun.yaml diff --git a/ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml b/ppcls/configs/quick_start/kunlun/VGG19_finetune_kunlun.yaml similarity index 100% rename from ppcls/configs/quick_start/VGG19_finetune_kunlun.yaml rename to ppcls/configs/quick_start/kunlun/VGG19_finetune_kunlun.yaml diff --git a/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml b/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml index c4f929cc0..ee5addcd4 100644 --- a/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml +++ b/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml @@ -1,40 +1,54 @@ -mode: 'train' -ARCHITECTURE: - name: 'ShuffleNetV2_x0_25' +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + class_num: 102 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 20 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 224, 224] + save_inference_dir: ./inference -checkpoints: "" -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 102 -total_images: 1020 -save_interval: 1 -validate: True -use_gpu: False -valid_interval: 1 -epochs: 20 -topk: 5 -image_shape: [3, 224, 224] +# model architecture +Arch: + name: ShuffleNetV2_x0_25 + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.0125 -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.00001 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.0125 + warmup_epoch: 5 + regularizer: + name: 'L2' + coeff: 0.00001 -TRAIN: - batch_size: 32 - num_workers: 0 - file_list: "./dataset/flowers102/train_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/train_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -43,19 +57,27 @@ TRAIN: - RandFlipImage: flip_code: 1 - NormalizeImage: - scale: 1./255. + scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: -VALID: - batch_size: 20 - num_workers: 0 - file_list: "./dataset/flowers102/val_list.txt" - data_dir: "./dataset/flowers102/" - shuffle_seed: 0 - transforms: + sampler: + name: DistributedBatchSampler + batch_size: 256 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True + + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: ./dataset/flowers102/ + cls_label_path: ./dataset/flowers102/val_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -68,4 +90,40 @@ VALID: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/whl/demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 256 + - CropImage: + size: 224 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml b/ppcls/configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml index 6cc50c98f..1b70d061b 100644 --- a/ppcls/configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml +++ b/ppcls/configs/quick_start/professional/MobileNetV3_large_x1_0_CIFAR100_finetune.yaml @@ -2,29 +2,28 @@ Global: checkpoints: null pretrained_model: null - output_dir: "./output/" - device: "gpu" + output_dir: ./output/ + device: gpu class_num: 100 save_interval: 1 eval_during_train: True eval_interval: 1 - epochs: 50 + epochs: 100 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 32, 32] - save_inference_dir: "./inference" + save_inference_dir: ./inference # model architecture Arch: - name: "MobileNetV3_large_x1_0" + name: MobileNetV3_large_x1_0 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 - epsilon: 0.1 Eval: - CELoss: weight: 1.0 @@ -45,83 +44,85 @@ Optimizer: DataLoader: Train: dataset: - name: ImageNetDataset - image_root: "./dataset/CIFAR100/" - cls_label_path: "./dataset/CIFAR100/train_list.txt" - transform_ops: - - RandCropImage: - size: 32 - scale: [0.5, 1] - ratio: [1, 1] - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 0.00392157 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/train_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - RandCropImage: + size: 32 + - RandFlipImage: + flip_code: 1 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' sampler: - name: DistributedBatchSampler - batch_size: 1000 - drop_last: False - shuffle: True + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: True loader: - num_workers: 6 - use_shared_memory: False + num_workers: 4 + use_shared_memory: True Eval: # TOTO: modify to the latest trainer dataset: - name: ImageNetDataset - image_root: "./dataset/CIFAR100/" - cls_label_path: "./dataset/CIFAR100/test_list.txt" - transform_ops: - - ResizeImage: - resize_short: 36 - - CropImage: - size: 32 - - NormalizeImage: - scale: 0.00392157 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/test_list.txt + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' sampler: - name: DistributedBatchSampler - batch_size: 1000 - drop_last: False - shuffle: False + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False loader: - num_workers: 6 - use_shared_memory: False + num_workers: 4 + use_shared_memory: True Infer: - infer_imgs: "docs/images/whl/demo.jpg" + infer_imgs: docs/images/whl/demo.jpg batch_size: 10 transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 36 - - CropImage: - size: 32 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: PostProcess: name: Topk topk: 5 - class_id_map_file: "ppcls/utils/imagenet1k_label_list.txt" Metric: - Train: - - Topk: - k: [1, 5] - Eval: - - Topk: - k: [1, 5] - + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml b/ppcls/configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml index f79714421..25166a260 100644 --- a/ppcls/configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml +++ b/ppcls/configs/quick_start/professional/R50_vd_distill_MV3_large_x1_0_CIFAR100.yaml @@ -1,73 +1,151 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0' +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: "./output/" + device: "gpu" + class_num: 100 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 100 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 32, 32] + save_inference_dir: "./inference" -pretrained_model: - - "./pretrained/CIFAR100_R50_vd_final/ppcls" - - "./pretrained/MobileNetV3_large_x1_0_pretrained" -model_save_dir: "./output/" -classes_num: 100 -total_images: 50000 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 32, 32] +# model architecture +Arch: + name: "DistillationModel" + # if not null, its lengths should be same as models + pretrained_list: + # if not null, its lengths should be same as models + freeze_params_list: + - True + - False + models: + - Teacher: + name: ResNet50_vd + pretrained: "./pretrained/best_model" + - Student: + name: MobileNetV3_large_x1_0 + pretrained: True -use_distillation: True + infer_model_name: "Student" -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.04 -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 +# loss function config for traing/eval process +Loss: + Train: + - DistillationCELoss: + weight: 1.0 + model_name_pairs: + - ["Student", "Teacher"] + Eval: + - DistillationGTCELoss: + weight: 1.0 + model_names: ["Student"] + -TRAIN: - batch_size: 1024 - num_workers: 0 - file_list: "./dataset/CIFAR100/train_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 32 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.04 + warmup_epoch: 5 + regularizer: + name: 'L2' + coeff: 0.0001 -VALID: - batch_size: 256 - num_workers: 0 - file_list: "./dataset/CIFAR100/test_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 36 - - CropImage: - size: 32 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: "./dataset/CIFAR100/" + cls_label_path: "./dataset/CIFAR100/train_list.txt" + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - RandCropImage: + size: 32 + - RandFlipImage: + flip_code: 1 + - NormalizeImage: + scale: 0.00392157 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + + sampler: + name: DistributedBatchSampler + batch_size: 512 + drop_last: False + shuffle: True + loader: + num_workers: 6 + use_shared_memory: True + + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: "./dataset/CIFAR100/" + cls_label_path: "./dataset/CIFAR100/test_list.txt" + transform_ops: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 0.00392157 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 6 + use_shared_memory: True + +Infer: + infer_imgs: "docs/images/whl/demo.jpg" + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: DistillationPostProcess + func: Topk + topk: 5 + +Metric: + Train: + - DistillationTopkAcc: + model_key: "Student" + topk: [1, 5] + Eval: + - DistillationTopkAcc: + model_key: "Student" + topk: [1, 5] diff --git a/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml b/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml index 9871f18f8..808856434 100644 --- a/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml +++ b/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100.yaml @@ -1,40 +1,53 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + class_num: 100 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 100 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 32, 32] + save_inference_dir: ./inference -checkpoints: "" -pretrained_model: "" -model_save_dir: "./output/" -classes_num: 100 -total_images: 50000 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 32, 32] -use_mix: False +# model architecture +Arch: + name: ResNet50_vd + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.04 -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.04 + regularizer: + name: 'L2' + coeff: 0.0001 -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/CIFAR100/train_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/train_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -43,24 +56,27 @@ TRAIN: - RandFlipImage: flip_code: 1 - NormalizeImage: - scale: 1./255. + scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: - mix: - - MixupOperator: - alpha: 0.2 + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True - -VALID: - batch_size: 256 - num_workers: 0 - file_list: "./dataset/CIFAR100/test_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/test_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -73,4 +89,40 @@ VALID: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/whl/demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + +Metric: + Train: + - TopkAcc: + topk: [1, 5] + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100_finetune.yaml b/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100_finetune.yaml deleted file mode 100644 index 64c487e46..000000000 --- a/ppcls/configs/quick_start/professional/ResNet50_vd_CIFAR100_finetune.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - -checkpoints: "" -pretrained_model: "./pretrained/ResNet50_vd_pretrained" -model_save_dir: "./output/" -classes_num: 100 -total_images: 50000 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 32, 32] -use_mix: False - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.04 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/CIFAR100/train_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 32 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - mix: - - MixupOperator: - alpha: 0.2 - - -VALID: - batch_size: 256 - num_workers: 0 - file_list: "./dataset/CIFAR100/test_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 36 - - CropImage: - size: 32 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: diff --git a/ppcls/configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml b/ppcls/configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml index 1e77601d2..d7e9d25d6 100644 --- a/ppcls/configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml +++ b/ppcls/configs/quick_start/professional/ResNet50_vd_mixup_CIFAR100_finetune.yaml @@ -1,40 +1,53 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' +# global configs +Global: + checkpoints: null + pretrained_model: null + output_dir: ./output/ + device: gpu + class_num: 100 + save_interval: 1 + eval_during_train: True + eval_interval: 1 + epochs: 100 + print_batch_step: 10 + use_visualdl: False + # used for static mode and model export + image_shape: [3, 32, 32] + save_inference_dir: ./inference -checkpoints: "" -pretrained_model: "./pretrained/ResNet50_vd_pretrained" -model_save_dir: "./output/" -classes_num: 100 -total_images: 50000 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 32, 32] -use_mix: True +# model architecture +Arch: + name: ResNet50_vd + +# loss function config for traing/eval process +Loss: + Train: + - CELoss: + weight: 1.0 + Eval: + - CELoss: + weight: 1.0 -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.04 -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 +Optimizer: + name: Momentum + momentum: 0.9 + lr: + name: Cosine + learning_rate: 0.04 + regularizer: + name: 'L2' + coeff: 0.0001 -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/CIFAR100/train_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: + +# data loader for train and eval +DataLoader: + Train: + dataset: + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/train_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -43,24 +56,30 @@ TRAIN: - RandFlipImage: flip_code: 1 - NormalizeImage: - scale: 1./255. + scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: - - mix: + batch_transform_ops: - MixupOperator: alpha: 0.2 + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: True + loader: + num_workers: 4 + use_shared_memory: True -VALID: - batch_size: 256 - num_workers: 0 - file_list: "./dataset/CIFAR100/test_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: + Eval: + # TOTO: modify to the latest trainer + dataset: + name: ImageNetDataset + image_root: ./dataset/CIFAR100/ + cls_label_path: ./dataset/CIFAR100/test_list.txt + transform_ops: - DecodeImage: to_rgb: True channel_first: False @@ -73,4 +92,37 @@ VALID: mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - - ToCHWImage: + sampler: + name: DistributedBatchSampler + batch_size: 64 + drop_last: False + shuffle: False + loader: + num_workers: 4 + use_shared_memory: True + +Infer: + infer_imgs: docs/images/whl/demo.jpg + batch_size: 10 + transforms: + - DecodeImage: + to_rgb: True + channel_first: False + - ResizeImage: + resize_short: 36 + - CropImage: + size: 32 + - NormalizeImage: + scale: 1.0/255.0 + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + order: '' + - ToCHWImage: + PostProcess: + name: Topk + topk: 5 + +Metric: + Eval: + - TopkAcc: + topk: [1, 5] diff --git a/ppcls/configs/quick_start/professional/ResNet50_vd_ssld_CIFAR100_finetune.yaml b/ppcls/configs/quick_start/professional/ResNet50_vd_ssld_CIFAR100_finetune.yaml deleted file mode 100644 index 9e217185b..000000000 --- a/ppcls/configs/quick_start/professional/ResNet50_vd_ssld_CIFAR100_finetune.yaml +++ /dev/null @@ -1,76 +0,0 @@ -mode: 'train' -ARCHITECTURE: - name: 'ResNet50_vd' - -checkpoints: "" -pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained" -model_save_dir: "./output/" -classes_num: 100 -total_images: 50000 -save_interval: 1 -validate: True -valid_interval: 1 -epochs: 100 -topk: 5 -image_shape: [3, 32, 32] -use_mix: False - -LEARNING_RATE: - function: 'Cosine' - params: - lr: 0.04 - -OPTIMIZER: - function: 'Momentum' - params: - momentum: 0.9 - regularizer: - function: 'L2' - factor: 0.0001 - -TRAIN: - batch_size: 1024 - num_workers: 4 - file_list: "./dataset/CIFAR100/train_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - RandCropImage: - size: 32 - - RandFlipImage: - flip_code: 1 - - NormalizeImage: - scale: 1./255. - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: - - mix: - - MixupOperator: - alpha: 0.2 - - -VALID: - batch_size: 256 - num_workers: 0 - file_list: "./dataset/CIFAR100/test_list.txt" - data_dir: "./dataset/CIFAR100/" - shuffle_seed: 0 - transforms: - - DecodeImage: - to_rgb: True - channel_first: False - - ResizeImage: - resize_short: 36 - - CropImage: - size: 32 - - NormalizeImage: - scale: 1.0/255.0 - mean: [0.485, 0.456, 0.406] - std: [0.229, 0.224, 0.225] - order: '' - - ToCHWImage: