fix small error
parent
5fd7085ddf
commit
fee32b555a
|
@ -34,8 +34,8 @@ OPTIMIZER:
|
|||
TRAIN:
|
||||
batch_size: 256
|
||||
num_workers: 4
|
||||
file_list: "./dataset/NUS-SCENE-dataset/multilabel_train_list.txt"
|
||||
data_dir: "./dataset/NUS-SCENE-dataset/images"
|
||||
file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt"
|
||||
data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
|
@ -59,8 +59,8 @@ TRAIN:
|
|||
VALID:
|
||||
batch_size: 64
|
||||
num_workers: 4
|
||||
file_list: "./dataset/NUS-SCENE-dataset/multilabel_test_list.txt"
|
||||
data_dir: "./dataset/NUS-SCENE-dataset/images"
|
||||
file_list: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt"
|
||||
data_dir: "./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
|
@ -89,8 +89,8 @@ class MultiLabelLoss(Loss):
|
|||
def __init__(self, class_dim=1000, epsilon=None):
|
||||
super(MultiLabelLoss, self).__init__(class_dim, epsilon)
|
||||
|
||||
def __call__(self, input, target, use_pure_fp16=False):
|
||||
cost = self._binary_crossentropy(input, target, use_pure_fp16)
|
||||
def __call__(self, input, target):
|
||||
cost = self._binary_crossentropy(input, target)
|
||||
|
||||
return cost
|
||||
|
||||
|
|
|
@ -72,10 +72,15 @@ def main():
|
|||
for number, result_dict in enumerate(batch_result_list):
|
||||
filename = img_path_list[number].split("/")[-1]
|
||||
clas_ids = result_dict["clas_ids"]
|
||||
scores_str = "[{}]".format(", ".join("{:.2f}".format(
|
||||
r) for r in result_dict["scores"]))
|
||||
print("File:{}, Top-{} result: class id(s): {}, score(s): {}".
|
||||
format(filename, args.top_k, clas_ids, scores_str))
|
||||
if multilabel:
|
||||
print("File:{}, multilabel result: ".format(filename))
|
||||
for id, score in zip(clas_ids, result_dict["scores"]):
|
||||
print("\tclass id: {}, probability: {:.2f}".format(id, score))
|
||||
else:
|
||||
scores_str = "[{}]".format(", ".join("{:.2f}".format(
|
||||
r) for r in result_dict["scores"]))
|
||||
print("File:{}, Top-{} result: class id(s): {}, score(s): {}".
|
||||
format(filename, args.top_k, clas_ids, scores_str))
|
||||
|
||||
if args.pre_label_image:
|
||||
save_prelabel_results(clas_ids[0], img_path_list[number],
|
||||
|
|
Loading…
Reference in New Issue